Chern-Simons limit of the standing wave solutions for the Schrodinger equations coupled with a neutral scalar field

被引:22
作者
Han, Jongmin [1 ]
Huh, Hyungjin [2 ]
Seok, Jinmyoung [3 ]
机构
[1] Kyung Hee Univ, Dept Math, Seoul 130701, South Korea
[2] Chung Ang Univ, Dept Math, Seoul 156756, South Korea
[3] Korea Inst Adv Study, Sch Math, Seoul 130722, South Korea
基金
新加坡国家研究基金会;
关键词
Schrodinger; Chern-Simons limit; Standing waves; Variational methods; MAXWELL EQUATIONS; SOLITARY WAVES; SOLITONS; ASYMPTOTICS; EXISTENCE;
D O I
10.1016/j.jfa.2013.09.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show the existence of standing wave solutions to the Schrodinger equation coupled with a neutral scalar field. We also verify the Chern-Simons limit for these solutions. More precisely we prove that solutions to Eqs. (1.3)-(1.4) converge to the unique positive radially symmetric solution of the nonlinear Schrodinger equation (1.6) as the coupling constant q goes to infinity. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:318 / 342
页数:25
相关论文
共 25 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]   Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations [J].
Benci, V ;
Fortunato, D .
REVIEWS IN MATHEMATICAL PHYSICS, 2002, 14 (04) :409-420
[3]   BLOWING-UP TIME-DEPENDENT SOLUTIONS OF THE PLANAR, CHERN-SIMONS GAUGED NONLINEAR SCHRODINGER-EQUATION [J].
BERGE, L ;
DEBOUARD, A ;
SAUT, JC .
NONLINEARITY, 1995, 8 (02) :235-253
[4]   ASYMPTOTICS FOR THE MINIMIZATION OF A GINZBURG-LANDAU FUNCTIONAL [J].
BETHUEL, F ;
BREZIS, H ;
HELEIN, F .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1993, 1 (02) :123-148
[5]   Standing waves of nonlinear Schrodinger equations with the gauge field [J].
Byeon, Jaeyoung ;
Huh, Hyungjin ;
Seok, Jinmyoung .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (06) :1575-1608
[6]   Non-topological multivortex solutions to the self-dual Maxwell-Chern-Simons-Higgs systems [J].
Chae, D ;
Imanuvilov, OY .
JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 196 (01) :87-118
[7]  
d'Avenia P, 2002, ADV NONLINEAR STUD, V2, P177
[8]   SELF-DUALITY AND NONRELATIVISTIC MAXWELL-CHERN-SIMONS SOLITONS [J].
DUNNE, GV ;
TRUGENBERGER, CA .
PHYSICAL REVIEW D, 1991, 43 (04) :1323-1331
[9]   Nontopological bare solutions in the relativistic self-dual Maxwell-Chern-Simons-Higgs model [J].
Han, JM ;
Jang, JD .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (04)
[10]   Nonself-dual Chern-Simons and Maxwell-Chern-Simons vortices on bounded domains (vol 221, pg 167, 2005) [J].
Han, Jongmin ;
Kim, Namkwon .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 242 (02) :674-674