Engineering the TiO2 outermost layers using magnesium for carbon dioxide photoreduction

被引:56
作者
Manzanares, Marta [1 ]
Fabrega, Cristian [1 ]
Oriol Osso, J. [2 ,3 ]
Vega, Lourdes F. [2 ,3 ]
Andreu, Teresa [1 ]
Ramon Morante, Joan [1 ,4 ]
机构
[1] IREC, Barcelona 08930, Spain
[2] MATGAS Res Ctr, Bellaterra 08193, Spain
[3] Air Prod Grp, Barcelona 08009, Spain
[4] Univ Barcelona, Dept Elect, E-08028 Barcelona, Spain
关键词
Artificial photosynthesis; Carbon dioxide photoreduction; TiO2; photocatalyst; Magnesium; ARTIFICIAL PHOTOSYNTHESIS; PHOTOCATALYTIC REDUCTION; TIO2-BASED CATALYSTS; PHOTO REDUCTION; CO2; WATER; GAS; MECHANISM; FILMS; MGO;
D O I
10.1016/j.apcatb.2013.11.036
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Magnesium modified TiO2 photocatalyst has been found to improve the CO2 photoreduction reaction, with a high selectivity towards CH4. Thus, Mg-TiO2 has been synthesized with different compositions up to 2.0 wt%. Unlike the bare TiO2, the surface reorganization originated by the presence of Mg enhances the formation of methane by a factor of 4.5, corroborating that complete reduction of CO2 is achieved. It was found that the enhancement of the overall photocatalytic activity towards carbon dioxide reduction can be increased by a factor of 3, revealing a straightforward correlation with the surface states induced by the presence of the doping element. Finally, the evolution of the selectivity versus methane formation against hydrogen is discussed for the different magnesium loadings. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:57 / 62
页数:6
相关论文
共 50 条
[1]   Green Chemistry: Principles and Practice [J].
Anastas, Paul ;
Eghbali, Nicolas .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :301-312
[2]   Origins, current status, and future challenges of green chemistry [J].
Anastas, PT ;
Kirchhoff, MM .
ACCOUNTS OF CHEMICAL RESEARCH, 2002, 35 (09) :686-694
[3]   Utilisation of CO2 as a chemical feedstock:: opportunities and challenges [J].
Aresta, Michele ;
Dibenedetto, Angela .
DALTON TRANSACTIONS, 2007, (28) :2975-2992
[4]   Process synthesis of hybrid coal, biomass, and natural gas to liquids via Fischer-Tropsch synthesis, ZSM-5 catalytic conversion, methanol synthesis, methanol-to-gasoline, and methanol-to-olefins/distillate technologies [J].
Baliban, Richard C. ;
Elia, Josephine A. ;
Weekman, Vern ;
Floudas, Christodoulos A. .
COMPUTERS & CHEMICAL ENGINEERING, 2012, 47 :29-56
[5]   TiO2/MgO composite photocatalyst:: the role of MgO in photoinduced charge carrier separation [J].
Bandara, J ;
Hadapangoda, CC ;
Jayasekera, WG .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2004, 50 (02) :83-88
[6]   Superior Electron Transport and Photocatalytic Abilities of Metal-Nanoparticle-Loaded TiO2 Superstructures [J].
Bian, Zhenfeng ;
Tachikawa, Takashi ;
Kim, Wooyul ;
Choi, Wonyong ;
Majima, Tetsuro .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (48) :25444-25453
[7]   Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni [J].
Biesinger, Mark C. ;
Payne, Brad P. ;
Grosvenor, Andrew P. ;
Lau, Leo W. M. ;
Gerson, Andrea R. ;
Smart, Roger St. C. .
APPLIED SURFACE SCIENCE, 2011, 257 (07) :2717-2730
[8]   Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications [J].
Chen, Xiaobo ;
Mao, Samuel S. .
CHEMICAL REVIEWS, 2007, 107 (07) :2891-2959
[9]   Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals [J].
Chen, Xiaobo ;
Liu, Lei ;
Yu, Peter Y. ;
Mao, Samuel S. .
SCIENCE, 2011, 331 (6018) :746-750
[10]   Renewable energy sources: Their global potential for the first-half of the 21st century at a global level: An integrated approach [J].
de Vries, Bert J. M. ;
van Vuuren, Detlef P. ;
Hoogwijk, Monique M. .
ENERGY POLICY, 2007, 35 (04) :2590-2610