Carbon Formation Mechanism of C2H2 in Ni-Based Catalysts Revealed by in Situ Electron Microscopy and Molecular Dynamics Simulations

被引:22
作者
Sun, Chunwen [1 ,2 ,6 ]
Su, Rui [3 ,5 ]
Chen, Jian [4 ]
Lu, Liang [1 ]
Guan, Pengfei [3 ]
机构
[1] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, CAS Ctr Excellence Nanosci, Beijing 100083, Peoples R China
[2] Univ Chinese Acad Sci, Sch Nanosci & Technol, Beijing 100049, Peoples R China
[3] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[4] Natl Res Council Canada NRC, Nanotechnol Res Ctr, Edmonton, AB T6G 2M9, Canada
[5] Hangzhou Dianzi Univ, Innovat Ctr Adv Mat, Hangzhou 310018, Peoples R China
[6] Guangxi Univ, Sch Phys Sci & Technol, Ctr Nanoenergy Res, Nanning 530004, Peoples R China
来源
ACS OMEGA | 2019年 / 4卷 / 05期
基金
中国国家自然科学基金;
关键词
FILAMENTOUS CARBON; OXIDE; METHANE; ANODE; NUCLEATION; TEMPERATURE; NANOFIBERS; GROWTH;
D O I
10.1021/acsomega.9b00958
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Understanding the carbon formation mechanism is critical for designing catalysts in various applications. Here, we report the observation of the carbon formation mechanism on Ni-based catalysts by environmental transmission electron microscopy (ETEM) over a wide temperature range in combination with molecular dynamics simulations and density functional theory calculations. In situ TEM observation performed in a C2H2/H-2 atmosphere provides real-time evidence that Ni3C is an intermediate phase that decomposes to graphitic carbon and metallic Ni, leading to carbon formation. Mechanisms of acetylene decomposition and evolution of carbon atom configuration are revealed by molecular dynamics simulations, which corroborate the experimental results. The modification of MgO on NiO can effectively decrease the formation of graphitic layers and thus enhance the catalytic performance of NiO. This finding may provide an insight into the origin of the carbon deposition and aid in developing effective approaches to mitigate it.
引用
收藏
页码:8413 / 8420
页数:8
相关论文
共 42 条
[1]   Mechanisms for catalytic carbon nanofiber growth studied by ab initio density functional theory calculations [J].
Abild-Pedersen, F ;
Norskov, JK ;
Rostrup-Nielsen, JR ;
Sehested, J ;
Helveg, S .
PHYSICAL REVIEW B, 2006, 73 (11)
[2]   REACTIVE MOLECULAR DYNAMICS: NUMERICAL METHODS AND ALGORITHMIC TECHNIQUES [J].
Aktulga, Hasan Metin ;
Pandit, Sagar A. ;
van Duin, Adri C. T. ;
Grama, Ananth Y. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (01) :C1-C23
[3]  
[Anonymous], 1998, LAX ANS TASCHENBUCH
[4]   Advanced anodes for high-temperature fuel cells [J].
Atkinson, A ;
Barnett, S ;
Gorte, RJ ;
Irvine, JTS ;
Mcevoy, AJ ;
Mogensen, M ;
Singhal, SC ;
Vohs, J .
NATURE MATERIALS, 2004, 3 (01) :17-27
[5]   On the time scale associated with Monte Carlo simulations [J].
Bal, Kristof M. ;
Neyts, Erik C. .
JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (20)
[6]   Steam reforming and graphite formation on Ni catalysts [J].
Bengaard, HS ;
Norskov, JK ;
Sehested, J ;
Clausen, BS ;
Nielsen, LP ;
Molenbroek, AM ;
Rostrup-Nielsen, JR .
JOURNAL OF CATALYSIS, 2002, 209 (02) :365-384
[7]  
BOHM H, 1983, AM MINERAL, V68, P11
[8]   Synthesis of carbon nanofibers:: effects of Ni crystal size during methane decomposition [J].
Chen, D ;
Christensen, KO ;
Ochoa-Fernández, E ;
Yu, ZX ;
Totdal, B ;
Latorre, N ;
Monzón, A ;
Holmen, A .
JOURNAL OF CATALYSIS, 2005, 229 (01) :82-96
[9]   Carbon nanofibers: Catalytic synthesis and applications [J].
De Jong, KP ;
Geus, JW .
CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 2000, 42 (04) :481-510
[10]   INTERACTION OF ACETYLENE WITH NI(111), CHEMISORBED OXYGEN ON NI(111), AND NIO(111) - FORMATION OF CH SPECIES ON CHEMICALLY MODIFIED NI(111) SURFACES [J].
DEMUTH, JE .
SURFACE SCIENCE, 1977, 69 (02) :365-384