Numerical investigation of radiative properties and surface plasmon resonance of silver nanorod dimers on a substrate

被引:13
作者
An, Wei [1 ]
Zhu, Tong [1 ]
Zhu, QunZhi [2 ]
机构
[1] Tongji Univ, Coll Mech Engn, Shanghai 200092, Peoples R China
[2] Shanghai Univ Elect Power, Sch Energy & Environm Engn, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Radiative properties; Silver nanorod dimer; Surface plasmon resonance; DIFFERENCE TIME-DOMAIN; OPTICAL-PROPERTIES; GOLD NANOPARTICLES; SENSITIVITY; SHAPE; PAIRS; SIZE;
D O I
10.1016/j.jqsrt.2013.01.013
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
When the distance between two silver nanoparticles is small enough, interparticle surface plasmon coupling has a great impact on their radiative properties. It is becoming a promising technique to use in the sensing and imaging. A model based on finite difference time domain method is developed to investigate the effect of the assembled parameters on the radiative properties and the field-enhancement effect of silver nanorod dimer. The numerical results indicate that the radiative properties of silver nanorod dimer are very sensitive to the assembled angle and the polarization orientation of incident wave. There is great difference on the intensity and location of field-enhancement effect for the cases of different assembled angle and polarization. The most intensive field-enhancement effect occurs in the middle of two nanorods when two nanorods is assembled head to head and the polarization orientation parallels to the length axis of nanorods. Moreover, compared with the single nanorod, the wavelength of extinction peak of dimer has a red-shift, and the intensity of field-enhancement effect on the dimer is more intensive than that of single particle. With the increasing of particle length, extinction cross-section of silver nanorod dimer rises, while extinction efficiency and scattering efficiency firstly increase then drop down gradually. In addition, the extinction peaks of silver nanorod dimer on the substrate are smaller than that without the substrate, and their extinction peaks has a red-shift compared with that without the substrate. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:28 / 35
页数:8
相关论文
共 33 条
[1]   Biosensing with plasmonic nanosensors [J].
Anker, Jeffrey N. ;
Hall, W. Paige ;
Lyandres, Olga ;
Shah, Nilam C. ;
Zhao, Jing ;
Van Duyne, Richard P. .
NATURE MATERIALS, 2008, 7 (06) :442-453
[2]   Characterization of metallic nano-particles via surface wave scattering:: B.: Physical concept and numerical experiments [J].
Aslan, MM ;
Mengüç, MP ;
Videen, G .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2005, 93 (1-3) :207-217
[3]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
[4]  
Bohren C.F, 2008, Absorption and Scattering of Light by Small Particles
[5]  
Edwards D.F., 1985, Handbook of optical constants of solids
[6]   Plasmon Coupling of Gold Nanorods at Short Distances and in Different Geometries [J].
Funston, Alison M. ;
Novo, Carolina ;
Davis, Tim J. ;
Mulvaney, Paul .
NANO LETTERS, 2009, 9 (04) :1651-1658
[7]   Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications [J].
Ghosh, Sujit Kumar ;
Pal, Tarasankar .
CHEMICAL REVIEWS, 2007, 107 (11) :4797-4862
[8]   Confined plasmons in nanofabricated single silver particle pairs:: Experimental observations of strong interparticle interactions [J].
Gunnarsson, L ;
Rindzevicius, T ;
Prikulis, J ;
Kasemo, B ;
Käll, M ;
Zou, SL ;
Schatz, GC .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (03) :1079-1087
[9]   Plasmon resonances of a gold nanostar [J].
Hao, Feng ;
Nehl, Colleen L. ;
Hafner, Jason H. ;
Nordlander, Peter .
NANO LETTERS, 2007, 7 (03) :729-732
[10]   Plasmonic photothermal therapy (PPTT) using gold nanoparticles [J].
Huang, Xiaohua ;
Jain, Prashant K. ;
El-Sayed, Ivan H. ;
El-Sayed, Mostafa A. .
LASERS IN MEDICAL SCIENCE, 2008, 23 (03) :217-228