A Methodology to Characterize Vertical Accuracies in Lidar-derived Products at Landscape Scales

被引:8
作者
Tinkham, Wade T. [1 ]
Hoffman, Chad M. [2 ]
Falkowski, Michael J. [3 ]
Smith, Alistair M. S. [1 ]
Marshall, Hans-Peter [4 ]
Link, Timothy E. [1 ]
机构
[1] Univ Idaho, Coll Nat Resources, Dept Forest Rangeland & Fire Sci, Moscow, ID 83844 USA
[2] Colorado State Univ, Warner Coll Nat Resources, Dept Forest & Rangeland Stewardship, Ft Collins, CO 80523 USA
[3] Michigan Technol Univ, Sch Forest Resources & Environm Sci, Houghton, MI 49931 USA
[4] Boise State Univ, Ctr Geophys Invest Shallow Subsurface, Boise, ID 83725 USA
基金
美国国家科学基金会;
关键词
DIGITAL ELEVATION MODELS; AIRBORNE LIDAR; CLASSIFICATION; VEGETATION; DEPTH; FIELD;
D O I
10.14358/PERS.79.8.709
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Light detection and ranging (lidar) is the premier technology for high-resolution elevation measurements in complex landscapes. Lidar error assessments allow for objective interpretation of Digital Elevation Models (DEMS) and products reliant on these layers. The purpose of this study is to spatially estimate the vertical error of a lidar-derived DEM across seven cover types through modeling of field survey data. We use thirty-four variables and ground-based field survey data in a Random Forest regression to predict elevation error. Four variables captured the variability within the lidar errors, with three variables relevant to the distribution of returns within the vegetation and one relating to the terrain form. Good agreement was observed when comparing the survey against the model predictions (mu = -0.02 m, s = 0.13 m, and RMSE = 0.14 m). With most lidar products reliant upon accurate production of DEMS, providing spatially explicit assessments of uncertainty at the landscape level will increase user confidence in lidar products.
引用
收藏
页码:709 / 716
页数:8
相关论文
共 51 条
  • [1] On the potential of very high-resolution repeat DEMs in glacial and periglacial environments
    Abermann, J.
    Fischer, A.
    Lambrecht, A.
    Geist, T.
    [J]. CRYOSPHERE, 2010, 4 (01) : 53 - 65
  • [2] Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests
    Aertsen, Wim
    Kint, Vincent
    van Orshoven, Jos
    Ozkan, Kuersad
    Muys, Bart
    [J]. ECOLOGICAL MODELLING, 2010, 221 (08) : 1119 - 1130
  • [3] Accuracy assessment of lidar-derived digital elevation models
    Aguilar, Fernando J.
    Mills, Jon. P.
    [J]. PHOTOGRAMMETRIC RECORD, 2008, 23 (122) : 148 - 169
  • [4] Modelling vertical error in LiDAR-derived digital elevation models
    Aguilar, Fernando J.
    Mills, Jon P.
    Delgado, Jorge
    Aguilar, Manuel A.
    Negreiros, J. G.
    Perez, Jose L.
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2010, 65 (01) : 103 - 110
  • [5] Tropical forest carbon assessment: integrating satellite and airborne mapping approaches
    Asner, Gregory P.
    [J]. ENVIRONMENTAL RESEARCH LETTERS, 2009, 4 (03):
  • [6] Airborne laser scanning: existing systems and firms and other resources
    Baltsavias, EP
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 1999, 54 (2-3) : 164 - 198
  • [7] Bater C.W., 2008, COMPUT GEOSCI, V35, P289
  • [8] SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation
    Blewitt, Marnie E.
    Gendrel, Anne-Valerie
    Pang, Zhenyi
    Sparrow, Duncan B.
    Whitelaw, Nadia
    Craig, Jeffrey M.
    Apedaile, Anwyn
    Hilton, Douglas J.
    Dunwoodie, Sally L.
    Brockdorff, Neil
    Kay, Graham F.
    Whitelaw, Emma
    [J]. NATURE GENETICS, 2008, 40 (05) : 663 - 669
  • [9] Evaluation of light detection and ranging (LIDAR) for measuring river corridor topography
    Bowen, ZH
    Waltermire, RG
    [J]. JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, 2002, 38 (01): : 33 - 41
  • [10] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32