Active Mapping via Gradient Ascent Optimization of Shannon Mutual Information over Continuous SE(3) Trajectories

被引:6
作者
Asgharivaskasi, Arash [1 ]
Koga, Shumon [1 ]
Atanasov, Nikolay [1 ]
机构
[1] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA
来源
2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) | 2022年
关键词
D O I
10.1109/IROS47612.2022.9981875
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The problem of active mapping aims to plan an informative sequence of sensing views given a limited budget such as distance traveled. This paper considers active occupancy grid mapping using a range sensor, such as LiDAR or depth camera. State-of-the-art methods optimize information-theoretic measures relating the occupancy grid probabilities with the range sensor measurements. The non-smooth nature of ray-tracing within a grid representation makes the objective function non-differentiable, forcing existing methods to search over a discrete space of candidate trajectories. This work proposes a differentiable approximation of the Shannon mutual information between a grid map and ray-based observations that enables gradient ascent optimization in the continuous space of SE(3) sensor poses. Our gradient-based formulation leads to more informative sensing trajectories, while avoiding occlusions and collisions. The proposed method is demonstrated in simulated and real-world experiments in 2-D and 3-D environments. Materials supplementing this paper are available at: https://arashasgharivaskasi-bc.github.io/grad_active_mapping/
引用
收藏
页码:12994 / 13001
页数:8
相关论文
共 22 条
  • [1] Asgharivaskasi A., 2021, IEEE INT C ROB ICRA
  • [2] Nonmyopic View Planning for Active Object Classification and Pose Estimation
    Atanasov, Nikolay
    Sankaran, Bharath
    Le Ny, Jerome
    Pappas, George J.
    Daniilidis, Kostas
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2014, 30 (05) : 1078 - 1090
  • [3] Barfoot T., 2017, STATE ESTIMATION ROB, DOI 10.1017/9781316671528
  • [4] An ICP variant using a point-to-line metric
    Censi, Andrea
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-9, 2008, : 19 - 25
  • [5] Charrow B., 2015, IEEE INT C ROB AUT I
  • [6] Charrow Benjamin, 2015, Robotics: Science and Systems, V11, P3
  • [7] Deng D., 2020, ARXIV201105288
  • [8] Deng D, 2020, IEEE ASME INT C ADV, P1497, DOI 10.1109/AIM43001.2020.9158881
  • [9] OctoMap: an efficient probabilistic 3D mapping framework based on octrees
    Hornung, Armin
    Wurm, Kai M.
    Bennewitz, Maren
    Stachniss, Cyrill
    Burgard, Wolfram
    [J]. AUTONOMOUS ROBOTS, 2013, 34 (03) : 189 - 206
  • [10] Julian B. J., 2013, THESIS