Studies on the Properties of Fly Ash-Rice Husk Ash-Based Geopolymer for Use in Black Cotton Soils

被引:35
|
作者
Murmu, Anant Lal [1 ]
Patel, A. [1 ]
机构
[1] Visvesvaraya Natl Inst Technol, Dept Civil Engn, Nagpur 440010, Maharashtra, India
关键词
Geopolymer; BCS; Stabilization; Rice husk ash; Fly ash; VOLUME CHANGE BEHAVIOR; COMPRESSIVE STRENGTH; LIME STABILIZATION; EXPANSIVE SOILS; CEMENT; TAILINGS; CONCRETE; BRICKS;
D O I
10.1007/s40891-020-00224-z
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Expansive soils are found in many parts of the countries like India, Australia, Ethiopia, Sudan and USA in the form of black cotton soil (BCS). The distress induced by swelling and shrinkage behavior of black cotton soil results in millions of dollars of damage to the construction industry each year. In this study, experimental investigations are carried out for the stabilization of BCS using fly ash (FA) and rice husk ash (RHA)-based geopolymer. For this purpose, a mixture of sodium silicate (SS) and sodium hydroxide (SH) mixed in the ratio of 1.5 is used as the alkaline activator solution. A mixture of FA and RHA (mixed in weight percentage of 100:00, 75:25, 50:50, 25:75, 00:100) is used as the precursor and is referred as blended ash (termed as FARHA) in this paper. Stabilization potential of the geopolymer is determined by conducting unconfined compressive strength test, free swell ratio (FSR) test and shrinkage limit test on the stabilized specimens. Attempts are also made to establish the effects of varying the quantity of FARHA (5, 10, 15, and 20%) and curing period on strength properties of BCS. X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier Transformed Infrared Spectroscopy (FTIR) studies were conducted to analyze the micro-level changes due to geopolymerization. Results obtained from the experiments indicate that the geopolymerization significantly improves the strength of BCS and at the same time makes it less prone to swelling and shrinkage. Thus, BCS stabilized with blended ash geopolymer can be used as a sustainable alternative to conventional stabilizers.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Studies on the Properties of Fly Ash–Rice Husk Ash-Based Geopolymer for Use in Black Cotton Soils
    Anant Lal Murmu
    A. Patel
    International Journal of Geosynthetics and Ground Engineering, 2020, 6
  • [2] Investigation of fly ash and rice husk ash-based geopolymer concrete using nano particles
    Koti Chiranjeevi
    M. M. Vijayalakshmi
    T. R. Praveenkumar
    Applied Nanoscience, 2023, 13 : 839 - 846
  • [3] Investigation of fly ash and rice husk ash-based geopolymer concrete using nano particles
    Chiranjeevi, Koti
    Vijayalakshmi, M. M.
    Praveenkumar, T. R.
    APPLIED NANOSCIENCE, 2021, 13 (1) : 839 - 846
  • [4] Effects of cement as a substitute binder on strength and durability of fly ash-rice husk ash geopolymer concrete
    Arora, Saloni
    Jangra, Parveen
    Pham, Thong M.
    STRUCTURAL CONCRETE, 2023, 24 (05) : 6192 - 6208
  • [5] Properties of geopolymer with seeded fly ash and rice husk bark ash
    Nazari, Ali
    Bagheri, Ali
    Riahi, Shadi
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 528 (24): : 7395 - 7401
  • [6] Preparation of fly ash and rice husk ash geopolymer
    S. Detphan
    P. Chindaprasirt
    InternationalJournalofMineralsMetallurgyandMaterials, 2009, 16 (06) : 720 - 726
  • [7] Preparation of fly ash and rice husk ash geopolymer
    Detphan, S.
    Chindaprasirt, P.
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2009, 16 (06) : 720 - 726
  • [8] Comparison addition of rice husk ash and roof tile ash on fly ash-based geopolymer cement with portland cement
    Nurtanto, D.
    Junaidi, I
    Wahyuningtyas, W.
    Yunarni, W.
    REVISTA INGENIERIA DE CONSTRUCCION, 2020, 35 (03): : 287 - 294
  • [9] Influence of rice husk ash on the waterproof properties of ultrafine fly ash based geopolymer
    Zhu, Huajun
    Liang, Guangwei
    Xu, Jun
    Wu, Qisheng
    Zhai, Munan
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 208 : 394 - 401
  • [10] Strength development of recycled concrete aggregate stabilized with fly ash-rice husk ash based geopolymer as pavement base material
    Poltue, Theerapruet
    Suddeepong, Apichat
    Horpibulsuk, Suksun
    Samingthong, Wisanukhorn
    Arulrajah, Arul
    Rashid, Ahmad Safuan A.
    ROAD MATERIALS AND PAVEMENT DESIGN, 2020, 21 (08) : 2344 - 2355