GNSS observations of deep convective time scales in the Amazon

被引:65
作者
Adams, D. K. [1 ,3 ]
Gutman, Seth I. [2 ]
Holub, Kirk L. [2 ]
Pereira, Dulcineide S. [4 ]
机构
[1] Univ Nacl Autonoma Mexico, Ctr Ciencias Atmosfera, Mexico City 04510, DF, Mexico
[2] Natl Atmospher & Ocean Adm, Earth Syst Res Lab, Boulder, CO USA
[3] Univ Estado Amazonas, Programa Clima & Ambiente, Manaus, Amazonas, Brazil
[4] Inst Fed Educ Ciencia & Tecnol, Manaus, Amazonas, Brazil
关键词
GNSS; GPS; convection; tropical meteorology; water vapor; PRECIPITABLE WATER; TRANSITION; VAPOR; TEMPERATURE; VALIDATION; RADIOSONDE; SYSTEMS; SHALLOW; CYCLE;
D O I
10.1002/grl.50573
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In the tropics, understanding the shallow-to-deep transition and organization of convection on the mesoscale is made difficult due the paucity of long-term high spatial/temporal resolution data. In this paper, data from the world's first long-term equatorial Global Navigational Satellite System meteorological station in Manaus (Central Amazon) is used to create a new metric, a water vapor convergence time scale, to characterize the temporal evolution of deep convection over a tropical continental region. From 3.5years of data, 320 convective events were analyzed using a compositing analysis. Results reveal two characteristic time scales of water vapor convergence; an 8h time scale of weak convergence and 4h timescale of intense water vapor convergence associated with the shallow-to-deep convection transition. The 4h shallow-to-deep transition time scale is particularly robust, regardless of convective intensity, seasonality, or nocturnal versus daytime convection. This new result provides a useful metric for both high resolution and global climate models to replicate.
引用
收藏
页码:2818 / 2823
页数:6
相关论文
共 28 条
[1]   GNSS Precipitable Water Vapor from an Amazonian Rain Forest Flux Tower [J].
Adams, David K. ;
Fernandes, Rui M. S. ;
Maia, Jair M. F. .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2011, 28 (10) :1192-1198
[2]   A dense GNSS meteorological network for observing deep convection in the Amazon [J].
Adams, David K. ;
Fernandes, Rui M. S. ;
Kursinski, E. Robert ;
Maia, Jair M. ;
Sapucci, Luiz F. ;
Machado, Luiz A. T. ;
Vitorello, Icaro ;
Galera Monico, Joao Francisco ;
Holub, Kirk L. ;
Gutman, Seth I. ;
Filizola, Naziano ;
Bennett, Richard A. .
ATMOSPHERIC SCIENCE LETTERS, 2011, 12 (02) :207-212
[3]  
Betts AK, 2002, J GEOPHYS RES-ATMOS, V107, DOI 10.1029/2002JD002264
[4]  
Braun J.J., 2012, Eos, V93, P89, DOI [DOI 10.1029/2012EO090001, 10.1029/2012EO090001]
[5]  
Bretherton CS, 2004, J CLIMATE, V17, P1517, DOI 10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO
[6]  
2
[7]   A new satellite retrieval method for precipitable water vapor over land and ocean [J].
Deeter, Merritt N. .
GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (02)
[8]   Validation of Atmospheric Infrared Sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts [J].
Divakarla, MG ;
Barnet, CD ;
Goldberg, MD ;
McMillin, LM ;
Maddy, E ;
Wolf, W ;
Zhou, LH ;
Liu, XP .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2006, 111 (D9)
[9]   Moisture-convection feedback in the tropics [J].
Grabowski, WW ;
Moncrieff, MW .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2004, 130 (604) :3081-3104
[10]   Preconditioning Deep Convection with Cumulus Congestus [J].
Hohenegger, Cathy ;
Stevens, Bjorn .
JOURNAL OF THE ATMOSPHERIC SCIENCES, 2013, 70 (02) :448-464