RELATIONAL LEARNING BETWEEN MULTIPLE PULMONARY NODULES VIA DEEP SET ATTENTION TRANSFORMERS

被引:0
作者
Yang, Jiancheng [1 ,2 ,3 ,4 ]
Deng, Haoran [1 ]
Huang, Xiaoyang [1 ]
Ni, Bingbing [1 ,2 ,3 ,5 ]
Xu, Yi [1 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai, Peoples R China
[2] Shanghai Inst Adv Commun & Data Sci, Shanghai, Peoples R China
[3] Shanghai Jiao Tong Univ, AI Inst, MoE Key Lab Artificial Intelligence, Shanghai, Peoples R China
[4] Diannei Technol, Shanghai, Peoples R China
[5] Huawei Hisilicon, Shenzhen, Peoples R China
来源
2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020) | 2020年
基金
美国国家科学基金会;
关键词
Relational Learning; Attention; Multiple Pulmonary Nodules; Computer-Aided Diagnosis (CADx); COMPUTED-TOMOGRAPHY; IMAGES;
D O I
10.1109/isbi45749.2020.9098722
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Diagnosis and treatment of multiple pulmonary nodules are clinically important but challenging. Prior studies on nodule characterization use solitary-nodule approaches on multiple nodular patients, which ignores the relations between nodules. In this study, we propose a multiple instance learning (MIL) approach and empirically prove the benefit to learn the relations between multiple nodules. By treating the multiple nodules from a same patient as a whole, critical relational information between solitary-nodule voxels is extracted. To our knowledge, it is the first study to learn the relations between multiple pulmonary nodules. Inspired by recent advances in natural language processing (NLP) domain, we introduce a self-attention transformer equipped with 3D CNN, named NoduleSAT, to replace typical pooling-based aggregation in multiple instance learning. Extensive experiments on lung nodule false positive reduction on LUNA16 database, and malignancy classification on LIDC-IDRI database, validate the effectiveness of the proposed method.
引用
收藏
页码:1875 / 1878
页数:4
相关论文
共 13 条
[1]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[2]   Multilevel Contextual 3-D CNNs for False Positive Reduction in Pulmonary Nodule Detection [J].
Dou, Qi ;
Chen, Hao ;
Yu, Lequan ;
Qin, Jing ;
Heng, Pheng-Ann .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2017, 64 (07) :1558-1567
[3]  
Huang GL, 2017, IEEE ICC
[4]  
Ioffe S, 2015, PR MACH LEARN RES, V37, P448
[5]  
Liao Fangzhou, 2019, T NNLS
[6]   Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge [J].
Setio, Arnaud Arindra Adiyoso ;
Traverso, Alberto ;
de Bel, Thomas ;
Berens, Moira S. N. ;
van den Bogaard, Cas ;
Cerello, Piergiorgio ;
Chen, Hao ;
Dou, Qi ;
Evelina Fantacci, Maria ;
Geurts, Bram ;
van der Gugten, Robbert ;
Heng, Pheng Ann ;
Jansen, Bart ;
de Kaste, Michael M. J. ;
Kotov, Valentin ;
Lin, Jack Yu-Hung ;
Manders, Jeroen T. M. C. ;
Sonora-Mengana, Alexander ;
Carlos Garcia-Naranjo, Juan ;
Papavasileiou, Evgenia ;
Prokop, Mathias ;
Saletta, Marco ;
Schaefer-Prokop, Cornelia M. ;
Scholten, Ernst T. ;
Scholten, Luuk ;
Snoeren, Miranda M. ;
Lopez Torres, Ernesto ;
Vandemeulebroucke, Jef ;
Walasek, Nicole ;
Zuidhof, Guido C. A. ;
van Ginneken, Bram ;
Jacobs, Colin .
MEDICAL IMAGE ANALYSIS, 2017, 42 :1-13
[7]  
Sobue T, 2002, J CLIN ONCOL, V20, P911, DOI 10.1200/JCO.2002.20.4.911
[8]  
Vaswani A, 2017, ADV NEUR IN, V30
[9]   Automated pulmonary nodule detection in CT images using deep convolutional neural networks [J].
Xie, Hongtao ;
Yang, Dongbao ;
Sun, Nannan ;
Chen, Zhineng ;
Zhang, Yongdong .
PATTERN RECOGNITION, 2019, 85 :109-119
[10]   Modeling Point Clouds with Self-Attention and Gumbel Subset Sampling [J].
Yang, Jiancheng ;
Zhang, Qiang ;
Ni, Bingbing ;
Li, Linguo ;
Liu, Jinxian ;
Zhou, Mengdie ;
Tian, Qi .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3318-3327