Quasi-greedy systems of integer translates

被引:8
作者
Nielsen, Morten [1 ]
Sikic, Hrvoje [2 ]
机构
[1] Univ Aalborg, Dept Math Sci, DK-9220 Aalborg, Denmark
[2] Univ Zagreb, Dept Math, HR-10000 Zagreb, Croatia
关键词
Quasi-greedy system; Schauder basis; Integer translates; Shift-invariant space; FSI space;
D O I
10.1016/j.jat.2008.04.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider quasi-greedy systems of integer translates in a finitely generated shift-invariant subspace of L(2)(R(d)), that is systems for which the thresholding approximation procedure is Well behaved. We prove that every quasi-greedy system of integer translates is also a Riesz basis for its closed linear span. The result shows that there arc no conditional quasi-greedy bases of integer translates in a finitely generated shift-invariant space. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:43 / 51
页数:9
相关论文
共 19 条
[1]  
[Anonymous], 1996, 1 COURSE WAVELETS, DOI DOI 10.1201/9781420049985
[2]   The structure of shift-invariant subspaces of L2(Rn) [J].
Bownik, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 177 (02) :282-309
[3]   The structure of shift-modulation invariant spaces: The rational case [J].
Bownik, Marcin .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 244 (01) :172-219
[4]  
DAUBECHIES I, 1992, CBMS NSF REGIONAL C, V61
[5]   APPROXIMATION FROM SHIFT-INVARIANT SUBSPACES OF L(2(R(D)) [J].
DEBOOR, C ;
DEVORE, RA ;
RON, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 341 (02) :787-806
[6]   ON THE CONSTRUCTION OF MULTIVARIATE (PRE)WAVELETS [J].
DEBOOR, C ;
DEVORE, RA ;
RON, A .
CONSTRUCTIVE APPROXIMATION, 1993, 9 (2-3) :123-166
[7]   THE STRUCTURE OF FINITELY GENERATED SHIFT-INVARIANT SPACES IN L(2)(R(D)) [J].
DEBOOR, C ;
DEVORE, RA ;
RON, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 119 (01) :37-78
[8]   FOURIER-ANALYSIS OF THE APPROXIMATION POWER OF PRINCIPAL SHIFT-INVARIANT SPACES [J].
DEBOOR, C ;
RON, A .
CONSTRUCTIVE APPROXIMATION, 1992, 8 (04) :427-462
[9]   The thresholding greedy algorithm, greedy bases, and duality [J].
Dilworth, SJ ;
Kalton, NJ ;
Kutzarova, D ;
Temlyakov, VN .
CONSTRUCTIVE APPROXIMATION, 2003, 19 (04) :575-597
[10]  
DYN N, 1995, P LOND MATH SOC, V71, P76