The nature of the absorbing-state phase transition in the diffusive epidemic process

被引:26
作者
Dickman, Ronald [1 ]
Maia, Daniel Souza [1 ]
机构
[1] Univ Fed Minas Gerais, Inst Ciencias Exatas, Dept Fis, BR-30123970 Belo Horizonte, MG, Brazil
关键词
D O I
10.1088/1751-8113/41/40/405002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the diffusive epidemic process (DEP), particles of two species (A and B) hop on a lattice and undergo reactions B --> A and A + B --> 2B; the B-free state is absorbing. Renormalization group analysis predicts a continuous phase transition to the absorbing state when the hopping rate of B particles, D(B), is greater than or equal to that of A particles, and a discontinuous transition for D(A) > D(B). Monte Carlo simulations of the one-dimensional DEP suggest that, on the contrary, the transition is continuous in all cases. Here we present strong evidence for a continuous transition for D(A) > D(B) in the two-dimensional model as well. Our results suggest that hysteresis is absent in both the one- and two-dimensional cases.
引用
收藏
页数:11
相关论文
共 26 条
[1]   ORDER OF THE TRANSITION VERSUS SPACE DIMENSION IN A FAMILY OF CELLULAR AUTOMATA [J].
BIDAUX, R ;
BOCCARA, N ;
CHATE, H .
PHYSICAL REVIEW A, 1989, 39 (06) :3094-3105
[2]   NO-CO REACTION ON SQUARE AND HEXAGONAL SURFACES - A MONTE-CARLO SIMULATION - COMMENT [J].
BROSILOW, BJ ;
ZIFF, RM .
JOURNAL OF CATALYSIS, 1992, 136 (01) :275-278
[3]   Revisiting the nonequilibrium phase transition of the triplet-creation model [J].
Cardozo, G. O. ;
Fontanari, J. F. .
EUROPEAN PHYSICAL JOURNAL B, 2006, 51 (04) :555-561
[4]   Reply to "Comment on 'Critical behavior of a two-species reaction-diffusion problem' " [J].
de Freitas, JE ;
Lucena, LS ;
da Silva, LR ;
Hilhorst, HJ .
PHYSICAL REVIEW E, 2001, 64 (05) :2
[5]   Critical behavior of a two-species reaction-diffusion problem [J].
de Freitas, JE ;
Lucena, LS ;
da Silva, LR ;
Hilhorst, HJ .
PHYSICAL REVIEW E, 2000, 61 (06) :6330-6336
[6]   How to simulate the quasistationary state [J].
de Oliveira, MM ;
Dickman, R .
PHYSICAL REVIEW E, 2005, 71 (01)
[7]   Moment ratios for absorbing-state phase transitions [J].
Dickman, R ;
da Silva, JKL .
PHYSICAL REVIEW E, 1998, 58 (04) :4266-4270
[8]   1ST-ORDER PHASE-TRANSITION IN A ONE-DIMENSIONAL NONEQUILIBRIUM MODEL [J].
DICKMAN, R ;
TOME, T .
PHYSICAL REVIEW A, 1991, 44 (08) :4833-4838
[9]  
Fiore CE, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.046131
[10]   Critical behavior of a one-dimensional diffusive epidemic process [J].
Fulco, UL ;
Messias, DN ;
Lyra, ML .
PHYSICAL REVIEW E, 2001, 63 (06) :1-066118