New Analysis of the Du Fort-Frankel Methods

被引:8
作者
Corem, Neta [1 ]
Ditkowski, Adi [1 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
关键词
Du Fort-Frankel; Generalized Du Fort-Frankel; Finite difference; Finite difference stability; BOUNDARY-VALUE-PROBLEMS; PARABOLIC PROBLEMS; TIME;
D O I
10.1007/s10915-012-9627-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 1953 Du Fort and Frankel (Math. Tables Other Aids Comput., 7(43):135-152, 1953) proposed to solve the heat equation u (t) =u (xx) using an explicit scheme, which they claim to be unconditionally stable, with a truncation error is of order of . Therefore, it is not consistent when k=O(h). In the analysis presented below we show that the Du Fort-Frankel schemes are not unconditionally stable. However, when properly defined, the truncation error vanishes as h,k -> 0.
引用
收藏
页码:35 / 54
页数:20
相关论文
共 11 条
[1]  
[Anonymous], 1995, Time-Dependent Problems and Difference Methods
[2]  
[Anonymous], 1953, Math. Comp., DOI DOI 10.2307/2002754
[3]   GENERALIZED DU FORT-FRANKEL METHODS FOR PARABOLIC INITIAL-BOUNDARY VALUE-PROBLEMS [J].
GOTTLIEB, D ;
GUSTAFSSON, B .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (01) :129-144
[4]   THE DUFORT-FRANKEL TSCHEBYSCHEV METHOD FOR PARABOLIC INITIAL BOUNDARY-VALUE-PROBLEMS [J].
GOTTLIEB, D ;
LUSTMAN, L .
COMPUTERS & FLUIDS, 1983, 11 (02) :107-120
[5]  
Richtmyer R.D., 1994, Difference Methods for Initial-value Problems
[6]  
Richtmyer RD., 1957, Difference Methods for Initial Value Problems
[7]  
Strikwerda J., 2004, Finite Difference Schemes and Partial Differential Equations, V2nd
[8]   A spectral method for the time evolution in parabolic problems [J].
Suhov, A. Y. .
JOURNAL OF SCIENTIFIC COMPUTING, 2006, 29 (02) :201-217
[9]   SPECTRAL METHODS IN TIME FOR PARABOLIC PROBLEMS [J].
TALEZER, H .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (01) :1-11
[10]  
Taylor P. J., 1970, Computer Journal, V13, P92, DOI 10.1093/comjnl/13.1.92