Finite-temperature many-body perturbation theory in the grand canonical ensemble

被引:19
|
作者
Hirata, So [1 ]
Jha, Punit K. [1 ]
机构
[1] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2020年 / 153卷 / 01期
关键词
GROUND-STATE ENERGY; STABILITY;
D O I
10.1063/5.0009679
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A finite-temperature many-body perturbation theory is presented, which expands in power series the electronic grand potential, chemical potential, internal energy, and entropy on an equal footing. Sum-over-states and sum-over-orbitals analytical formulas for the second-order perturbation corrections to these thermodynamic properties are obtained in a time-independent, nondiagrammatic, algebraic derivation, relying on the sum rules of the Hirschfelder-Certain degenerate perturbation energies in a degenerate subspace as well as nine algebraic identities for the zeroth-order thermal averages of one- through four-indexed quantities and products thereof. They reproduce numerically exactly the benchmark data obtained as the numerical derivatives of the thermal-full-configuration-interaction results for a wide range of temperatures.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Finite-temperature many-body perturbation theory in the canonical ensemble
    Jha, Punit K.
    Hirata, So
    PHYSICAL REVIEW E, 2020, 101 (02)
  • [2] Finite-temperature second-order many-body perturbation theory revisited
    Santra, Robin
    Schirmer, Jochen
    CHEMICAL PHYSICS, 2017, 482 : 355 - 361
  • [3] Automatic computing of the grand potential in finite temperature many-body perturbation theory
    Tag, M. A.
    Mansour, M. E.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2019, 30 (11):
  • [4] FINITE-TEMPERATURE MANY-BODY THEORY WITH THE LIPKIN MODEL
    TZENG, SYT
    ELLIS, PJ
    KUO, TTS
    OSNES, E
    NUCLEAR PHYSICS A, 1994, 580 (02) : 277 - 290
  • [5] Quantum, many-body, finite-temperature perturbation theory for an electron-ion system
    Baker, GA
    Johnson, JD
    PHYSICS OF PLASMAS, 2000, 7 (01) : 68 - 72
  • [6] Modeling Electrochemical Processes with Grand Canonical Treatment of Many-Body Perturbation Theory
    Wei, Ziyang
    Goltl, Florian
    Steinmann, Stephan N.
    Sautet, Philippe
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (26): : 6079 - 6084
  • [7] Finite-temperature many-body perturbation theory for electrons: Algebraic recursive definitions, second-quantized derivation, linked-diagram theorem, general-order algorithms, and grand canonical and canonical ensembles
    Hirata, So
    JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (09):
  • [8] PROPERTIES OF NUCLEAR-MATTER IN A FINITE-TEMPERATURE RELATIVISTIC MANY-BODY THEORY
    FREEDMAN, RA
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1976, 21 (11): : 1312 - 1312
  • [9] Green/WeakCoupling: Implementation of fully self-consistent finite-temperature many-body perturbation theory for molecules and solids
    Iskakov, Sergei
    Yeh, Chia-Nan
    Pokhilko, Pavel
    Yu, Yang
    Zhang, Lei
    Harsha, Gaurav
    Abraham, Vibin
    Wen, Ming
    Wang, Munkhorgil
    Adamski, Jacob
    Chen, Tianran
    Gull, Emanuel
    Zgid, Dominika
    COMPUTER PHYSICS COMMUNICATIONS, 2025, 306
  • [10] Robust finite-temperature many-body scarring on a quantum computer
    Desaules, Jean-Yves
    Gustafson, Erik J.
    Li, Andy C. Y.
    Papic, Zlatko
    Halimeh, Jad C.
    PHYSICAL REVIEW A, 2024, 110 (04)