Liquid-vapor rectilinear diameter revisited

被引:15
作者
Garrabos, Y. [1 ,2 ]
Lecoutre, C. [1 ,2 ]
Marre, S. [1 ,2 ]
Beysens, D. [3 ]
Hahn, I. [4 ]
机构
[1] CNRS, ICMCB, UMR 5026, F-33600 Pessac, France
[2] Univ Bordeaux, ICMCB, UMR 5026, F-33600 Pessac, France
[3] Sorbonne Univ, Lab Phys & Mecan Milieux Heterogenes, CNRS PSL ESPCI, Sorbonne Paris Cite, 10 Rue Vauquelin, F-75005 Paris, France
[4] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
关键词
COEXISTENCE-CURVE; CRITICALITY; BEHAVIOR; SF6;
D O I
10.1103/PhysRevE.97.020101
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In the modern theory of critical phenomena, the liquid-vapor density diameter in simple fluids is generally expected to deviate from a rectilinear lawapproaching the critical point. However, by performing precise scannerlike optical measurements of the position of the SF6 liquid-vapor meniscus, in an approach much closer to criticality in temperature and density than earlier measurements, no deviation from a rectilinear diameter can be detected. The observedmeniscus position from far (10 K) to extremely close (1 mK) to the critical temperature is analyzed using recent theoretical models to predict the complete scaling consequences of a fluid asymmetry. The temperature dependence of the meniscus position appears consistent with the law of rectilinear diameter. The apparent absence of the critical hook in SF6 therefore seemingly rules out the need for the pressure scaling field contribution in the complete scaling theoretical framework in this SF6 analysis. More generally, this work suggests a way to clarify the experimental ambiguities in the simple fluids for the near-critical singularities in the density diameter.
引用
收藏
页数:5
相关论文
共 31 条
[1]   Crossover parametric equation of state for Ising-like systems [J].
Agayan, VA ;
Anisimov, MA ;
Sengers, JV .
PHYSICAL REVIEW E, 2001, 64 (02) :19
[2]   Nature of asymmetry in fluid criticality [J].
Anisimov, Mikhail A. ;
Wang, Jingtao .
PHYSICAL REVIEW LETTERS, 2006, 97 (02)
[3]   Classical-to-critical crossovers from field theory [J].
Bagnuls, C ;
Bervillier, C .
PHYSICAL REVIEW E, 2002, 65 (06)
[4]   Critical phenomena in microgravity: Past, present, and future [J].
Barmatz, M. ;
Hahn, Inseob ;
Lipa, J. A. ;
Duncan, R. V. .
REVIEWS OF MODERN PHYSICS, 2007, 79 (01) :1-52
[5]  
Cailletet L., 1886, J PHYS, V5, P549, DOI [10.1051/jphystap:018860050054900, DOI 10.1051/JPHYSTAP:018860050054900]
[6]   Soluble Model Fluids with Complete Scaling and Yang-Yang Features [J].
Cerdeirina, Claudio A. ;
Orkoulas, Gerassimos ;
Fisher, Michael E. .
PHYSICAL REVIEW LETTERS, 2016, 116 (04)
[7]   The Yang-Yang anomaly in fluid criticality: Experiment and scaling theory [J].
Fisher, ME ;
Orkoulas, G .
PHYSICAL REVIEW LETTERS, 2000, 85 (04) :696-699
[8]   CORRELATION FUNCTIONS + CRITICAL REGION OF SIMPLE FLUIDS [J].
FISHER, ME .
JOURNAL OF MATHEMATICAL PHYSICS, 1964, 5 (07) :944-+
[9]   THE STORY OF COULOMBIC CRITICALITY [J].
FISHER, ME .
JOURNAL OF STATISTICAL PHYSICS, 1994, 75 (1-2) :1-36
[10]   Crossover Equation of State Models Applied to the Critical Behavior of Xenon [J].
Garrabos, Y. ;
Lecoutre, C. ;
Marre, S. ;
Guillaument, R. ;
Beysens, D. ;
Hahn, I. .
JOURNAL OF STATISTICAL PHYSICS, 2015, 158 (06) :1379-1412