Modeling of a Nickel-based Fluidized Bed Membrane Reactor for Steam Methane Reforming Process

被引:0
|
作者
Pasha, Mustafa Kamal [1 ]
Ahmad, Iftikhar [1 ]
Mustafa, Jawad [1 ]
Kano, Manabu [2 ]
机构
[1] NUST, SCME, Dept Chem Engn, H-12, Islamabad 44000, Pakistan
[2] Kyoto Univ, Dept Syst Sci, Sakyo Ku, Yoshida Honmachi, Kyoto 6068501, Japan
来源
JOURNAL OF THE CHEMICAL SOCIETY OF PAKISTAN | 2019年 / 41卷 / 02期
关键词
Membrane reactor; Steam methane reforming; Aspen PLUS (R); Excel (R); Nickel membrane; Hydrogen; Modeling; Simulation; HYDROGEN SEPARATION; PD-AG;
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hydrogen being a green fuel is rapidly gaining importance in the energy sector. Steam methane reforming is one of the most industrially important chemical reaction and a key step in the production of high purity hydrogen. Due to inherent deficiencies of conventional reforming reactors, a new concept based on fluidized bed membrane reactor is getting the focus of researchers. In this work, a nickel-based fluidized bed membrane reactor model is developed in the Aspen PLUS (R) process simulator. A user-defined membrane module is embedded in the Aspen PLUS (R) through its interface with Microsoft (R) Excel. Then, a series combination of Gibbs reactors and membrane modules are used to develop a nickel-based fluidized bed membrane reactor. The model developed for nickel-based fluidized bed membrane reactor is compared with palladium-based membrane reactor in terms of methane conversion and hydrogen yield for a given panel of major operating parameters. The simulation results indicated that the model can accurately predict the behavior of a membrane reactor under different operating conditions. In addition, the model can be used to estimate the effective membrane area required for a given rate of hydrogen production.
引用
收藏
页码:219 / 229
页数:11
相关论文
共 50 条
  • [31] Hydrogen production from two-step steam methane reforming in a fluidized bed reactor
    Go, Kang Seok
    Son, Sung Real
    Kim, Sang Done
    Kang, Kyoung Soo
    Park, Chu Sik
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (03) : 1301 - 1309
  • [32] Numerical modeling studies for a methane dry reforming in a membrane reactor
    Lee, Boreum
    Lee, Sunggeun
    Lim, Hankwon
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2016, 34 : 1251 - 1261
  • [33] STEAM REFORMING OF METHANE IN A HYDROGEN-PERMEABLE MEMBRANE REACTOR
    UEMIYA, S
    SATO, N
    ANDO, H
    MATSUDA, T
    KIKUCHI, E
    APPLIED CATALYSIS, 1991, 67 (02): : 223 - 230
  • [34] Fluidized-bed steam methane reforming with oxygen input
    Roy, S
    Pruden, BB
    Adris, AM
    Grace, JR
    Lim, CJ
    CHEMICAL ENGINEERING SCIENCE, 1999, 54 (13-14) : 2095 - 2102
  • [35] Staged-separation membrane reactor for steam methane reforming
    Li, Anwu
    Lima, C. Jim
    Grace, John R.
    CHEMICAL ENGINEERING JOURNAL, 2008, 138 (1-3) : 452 - 459
  • [36] Multi-objective optimal configurations of a membrane reactor for steam methane reforming
    Li, Penglei
    Chen, Lingen
    Xia, Shaojun
    Kong, Rui
    Ge, Yanlin
    ENERGY REPORTS, 2022, 8 : 527 - 538
  • [37] Sorption Enhanced Steam Methane Reforming Process Performance and Bubbling Fluidized Bed Reactor Design Analysis by Use of a Two-Fluid Model
    Lindborg, Havard
    Jakobsen, Hugo A.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2009, 48 (03) : 1332 - 1342
  • [38] Optimization of an experimental membrane reactor for low-temperature methane steam reforming
    Kyriakides, Alexios-Spyridon
    Voutetakis, Spyros
    Papadopoulou, Simira
    Seferlis, Panos
    CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY, 2016, 18 (07) : 2065 - 2075
  • [39] Modified simulation of methane steam reforming in Pd-membrane/packed-bed type reactor
    Kim, JH
    Choi, BS
    Yi, J
    JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 1999, 32 (06) : 760 - 769
  • [40] Modeling of membrane reactor for steam methane reforming: From granular to structured catalysts
    A. B. Shigarov
    V. A. Kirillov
    Theoretical Foundations of Chemical Engineering, 2012, 46 : 97 - 107