Protein-protein complexation in bioluminescence

被引:16
作者
Titushin, Maxim S. [1 ]
Feng, Yingang [2 ]
Lee, John [3 ]
Vysotski, Eugene S. [4 ]
Liu, Zhi-Jie [1 ]
机构
[1] Chinese Acad Sci, Inst Biophys, Natl Lab Biomacromol, Beijing 100101, Peoples R China
[2] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao 266101, Peoples R China
[3] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA
[4] Russian Acad Sci, Siberian Branch, Inst Biophys, Lab Photobiol, Krasnoyarsk 660036, Russia
基金
中国国家自然科学基金;
关键词
green-fluorescent protein (GFP); photoprotein; luciferase; lumazine protein; Forster resonance energy transfer (FRET); docking; GREEN-FLUORESCENT PROTEIN; LUCIFERIN-BINDING-PROTEIN; RENILLA-RENIFORMIS BIOLUMINESCENCE; JELLYFISH CLYTIA-GREGARIA; AMINO-ACID-SEQUENCE; FISCHERI STRAIN Y-1; BACTERIAL LUCIFERASE; ENERGY-TRANSFER; CRYSTAL-STRUCTURE; VIBRIO-FISCHERI;
D O I
10.1007/s13238-011-1118-y
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
In this review we summarize the progress made towards understanding the role of protein-protein interactions in the function of various bioluminescence systems of marine organisms, including bacteria, jellyfish and soft corals, with particular focus on methodology used to detect and characterize these interactions. In some bioluminescence systems, protein-protein interactions involve an "accessory protein" whereby a stored substrate is efficiently delivered to the bioluminescent enzyme luciferase. Other types of complexation mediate energy transfer to an "antenna protein" altering the color and quantum yield of a bioluminescence reaction. Spatial structures of the complexes reveal an important role of electrostatic forces in governing the corresponding weak interactions and define the nature of the interaction surfaces. The most reliable structural model is available for the protein-protein complex of the Ca2+-regulated photoprotein clytin and green-fluorescent protein (GFP) from the jellyfish Clytia gregaria, solved by means of X-ray crystallography, NMR mapping and molecular docking. This provides an example of the potential strategies in studying the transient complexes involved in bioluminescence. It is emphasized that structural studies such as these can provide valuable insight into the detailed mechanism of bioluminescence.
引用
收藏
页码:957 / 972
页数:16
相关论文
共 115 条
[1]   STUDIES ON BIOLUMINESCENCE OF RENILLARENIFORMIS .14. MECHANISM OF CALCIUM INDUCTION OF RENILLA BIOLUMINESCENCE - INVOLVEMENT OF A CALCIUM-TRIGGERED LUCIFERIN BINDING-PROTEIN [J].
ANDERSON, JM ;
CHARBONNEAU, H ;
CORMIER, MJ .
BIOCHEMISTRY, 1974, 13 (06) :1195-1200
[2]  
ANDERSON JM, 1973, J BIOL CHEM, V248, P2937
[3]   The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling [J].
Arnold, K ;
Bordoli, L ;
Kopp, J ;
Schwede, T .
BIOINFORMATICS, 2006, 22 (02) :195-201
[4]   Electrostatics of nanosystems: Application to microtubules and the ribosome [J].
Baker, NA ;
Sept, D ;
Joseph, S ;
Holst, MJ ;
McCammon, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (18) :10037-10041
[5]  
Baldwin T.O., 1992, CHEM BIOCH FLAVOENZY, VIII, P467
[6]   CLONING AND EXPRESSION OF THE LUXY GENE FROM VIBRIO-FISCHERI STRAIN Y-1 IN ESCHERICHIA-COLI AND COMPLETE AMINO-ACID-SEQUENCE OF THE YELLOW FLUORESCENT PROTEIN [J].
BALDWIN, TO ;
TREAT, ML ;
DAUBNER, SC .
BIOCHEMISTRY, 1990, 29 (23) :5509-5515
[7]  
BERG OG, 1985, ANNU REV BIOPHYS BIO, V14, P131, DOI 10.1146/annurev.bb.14.060185.001023
[8]   Analysis of the Bacterial Luciferase Mobile Loop by Replica-Exchange Molecular Dynamics [J].
Campbell, Zachary T. ;
Baldwin, Thomas O. ;
Miyashita, Osamu .
BIOPHYSICAL JOURNAL, 2010, 99 (12) :4012-4019
[9]   Crystal Structure of the Bacterial Luciferase/Flavin Complex Provides Insight into the Function of the β Subunit [J].
Campbell, Zachary T. ;
Weichsel, Andrzej ;
Montfort, William R. ;
Baldwin, Thomas O. .
BIOCHEMISTRY, 2009, 48 (26) :6085-6094
[10]  
CHARBONNEAU H, 1979, J BIOL CHEM, V254, P769