A MULTIVARIATE GNEDENKO LAW OF LARGE NUMBERS

被引:9
作者
Fresen, Daniel [1 ]
机构
[1] Yale Univ, Dept Math, New Haven, CT 06511 USA
关键词
Random polytope; log-concave; law of large numbers; CONVEX; GEOMETRY; POINTS; VOLUME;
D O I
10.1214/12-AOP804
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We show that the convex hull of a large i.i.d. sample from an absolutely continuous log-concave distribution approximates a predetermined convex body in the logarithmic Hausdorff distance and in the Banach-Mazur distance. For log-concave distributions that decay super-exponentially, we also have approximation in the Hausdorff distance. These results are multivariate versions of the Gnedenko law of large numbers, which guarantees concentration of the maximum and minimum in the one-dimensional case. We provide quantitative bounds in terms of the number of points and the dimension of the ambient space.
引用
收藏
页码:3051 / 3080
页数:30
相关论文
共 24 条
[1]  
[Anonymous], 2002, GRAD TEXT M, DOI 10.1007/978-1-4613-0039-7
[2]  
BALL K, 1992, GEOMETRIAE DEDICATA, V41, P241
[3]  
BALL K., 1997, MATH SCI RES I PUBL, P311
[4]   CONVEX-BODIES, ECONOMIC CAP COVERINGS, RANDOM POLYTOPES [J].
BARANY, I ;
LARMAN, DG .
MATHEMATIKA, 1988, 35 (70) :274-291
[5]   Random points and lattice points in convex bodies [J].
Barany, Imre .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 45 (03) :339-365
[6]   Central limit theorems for Gaussian polytopes [J].
Barany, Imre ;
Vu, Van .
ANNALS OF PROBABILITY, 2007, 35 (04) :1593-1621
[7]   REGULAR SIMPLICES AND GAUSSIAN SAMPLES [J].
BARYSHNIKOV, YM ;
VITALE, RA .
DISCRETE & COMPUTATIONAL GEOMETRY, 1994, 11 (02) :141-147
[8]   CONCENTRATION OF THE INFORMATION IN DATA WITH LOG-CONCAVE DISTRIBUTIONS [J].
Bobkov, Sergey ;
Madiman, Mokshay .
ANNALS OF PROBABILITY, 2011, 39 (04) :1528-1543
[9]  
Bobkov SG, 2003, ANN PROBAB, V31, P195
[10]   Asymptotic shape of a random polytope in a convex body [J].
Dafnis, N. ;
Giannopoulos, A. ;
Tsolomitis, A. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (09) :2820-2839