Efficient worm-like locomotion: slip and control of soft-bodied peristaltic robots

被引:107
作者
Daltorio, Kathryn A. [1 ]
Boxerbaum, Alexander S. [2 ]
Horchler, Andrew D. [1 ]
Shaw, Kendrick M. [3 ,4 ]
Chiel, Hillel J. [5 ,6 ]
Quinn, Roger D. [1 ]
机构
[1] Case Western Reserve Univ, Dept Mech Engn, Cleveland, OH 44106 USA
[2] SRI Int, Menlo Pk, CA 94025 USA
[3] Case Western Reserve Univ, Dept Biol, Cleveland, OH 44106 USA
[4] Case Western Reserve Univ, Med Scientist Training Program, Cleveland, OH 44106 USA
[5] Case Western Reserve Univ, Dept Biol, Dept Neurosci, Cleveland, OH 44106 USA
[6] Case Western Reserve Univ, Dept Biomed Engn, Cleveland, OH 44106 USA
关键词
LIMIT-CYCLES; MODEL; SIMULATIONS; COMPETITION; MECHANISM; EARTHWORM; TENSION; DRIVEN;
D O I
10.1088/1748-3182/8/3/035003
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, we present a dynamic simulation of an earthworm-like robot moving in a pipe with radially symmetric Coulomb friction contact. Under these conditions, peristaltic locomotion is efficient if slip is minimized. We characterize ways to reduce slip-related losses in a constant-radius pipe. Using these principles, we can design controllers that can navigate pipes even with a narrowing in radius. We propose a stable heteroclinic channel controller that takes advantage of contact force feedback on each segment. In an example narrowing pipe, this controller loses 40% less energy to slip compared to the best-fit sine wave controller. The peristaltic locomotion with feedback also has greater speed and more consistent forward progress.
引用
收藏
页数:23
相关论文
共 108 条
[31]   LIMIT CYCLES IN COMPETITION COMMUNITIES [J].
GILPIN, ME .
AMERICAN NATURALIST, 1975, 109 (965) :51-60
[32]   A Legged Anchoring Mechanism for Capsule Endoscopes Using Micropatterned Adhesives [J].
Glass, Paul ;
Cheung, Eugene ;
Sitti, Metin .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2008, 55 (12) :2759-2767
[33]  
Gmiterko A., 2011, Proceedings of the 2011 15th IEEE International Conference on Intelligent Engineering Systems (INES), P91, DOI 10.1109/INES.2011.5954726
[34]  
Gray B Y J, 1938, J EXP BIOL, V15, P518
[35]   STRUCTURALLY STABLE HETEROCLINIC CYCLES [J].
GUCKENHEIMER, J ;
HOLMES, P .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1988, 103 :189-192
[36]  
Hirose S, 2004, IEEE ROBIO 2004: PROCEEDINGS OF THE IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS, P1
[37]  
Hoeg H. D., 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), P1599, DOI 10.1109/ROBOT.2000.844825
[38]  
Horchler A D, 2013, SHCTOOLS MATLAB TOOL
[39]   Central pattern generators for locomotion control in animals and robots: A review [J].
Ijspeert, Auke Jan .
NEURAL NETWORKS, 2008, 21 (04) :642-653
[40]   From swimming to walking with a salamander robot driven by a spinal cord model [J].
Ijspeert, Auke Jan ;
Crespi, Alessandro ;
Ryczko, Dimitri ;
Cabelguen, Jean-Marie .
SCIENCE, 2007, 315 (5817) :1416-1420