Efficient worm-like locomotion: slip and control of soft-bodied peristaltic robots

被引:106
作者
Daltorio, Kathryn A. [1 ]
Boxerbaum, Alexander S. [2 ]
Horchler, Andrew D. [1 ]
Shaw, Kendrick M. [3 ,4 ]
Chiel, Hillel J. [5 ,6 ]
Quinn, Roger D. [1 ]
机构
[1] Case Western Reserve Univ, Dept Mech Engn, Cleveland, OH 44106 USA
[2] SRI Int, Menlo Pk, CA 94025 USA
[3] Case Western Reserve Univ, Dept Biol, Cleveland, OH 44106 USA
[4] Case Western Reserve Univ, Med Scientist Training Program, Cleveland, OH 44106 USA
[5] Case Western Reserve Univ, Dept Biol, Dept Neurosci, Cleveland, OH 44106 USA
[6] Case Western Reserve Univ, Dept Biomed Engn, Cleveland, OH 44106 USA
关键词
LIMIT-CYCLES; MODEL; SIMULATIONS; COMPETITION; MECHANISM; EARTHWORM; TENSION; DRIVEN;
D O I
10.1088/1748-3182/8/3/035003
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, we present a dynamic simulation of an earthworm-like robot moving in a pipe with radially symmetric Coulomb friction contact. Under these conditions, peristaltic locomotion is efficient if slip is minimized. We characterize ways to reduce slip-related losses in a constant-radius pipe. Using these principles, we can design controllers that can navigate pipes even with a narrowing in radius. We propose a stable heteroclinic channel controller that takes advantage of contact force feedback on each segment. In an example narrowing pipe, this controller loses 40% less energy to slip compared to the best-fit sine wave controller. The peristaltic locomotion with feedback also has greater speed and more consistent forward progress.
引用
收藏
页数:23
相关论文
共 108 条
[1]   Winnerless competition principle and prediction of the transient dynamics in a Lotka-Volterra model [J].
Afraimovich, Valentin ;
Tristan, Irma ;
Huerta, Ramon ;
Rabinovich, Mikhail I. .
CHAOS, 2008, 18 (04)
[2]   On the origin of reproducible sequential activity in neural circuits [J].
Afraimovich, VS ;
Zhigulin, VP ;
Rabinovich, MI .
CHAOS, 2004, 14 (04) :1123-1129
[3]   A MIXED FORMULATION FOR FRICTIONAL CONTACT PROBLEMS PRONE TO NEWTON LIKE SOLUTION METHODS [J].
ALART, P ;
CURNIER, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1991, 92 (03) :353-375
[4]  
Alexander R M, 2003, PRINCIPLES ANIMAL LO, P86
[5]   Generalized dynamic Winkler model for nonlinear soil-structure interaction analysis [J].
Allotey, N. ;
El Naggar, M. Hesham .
CANADIAN GEOTECHNICAL JOURNAL, 2008, 45 (04) :560-573
[6]  
[Anonymous], 2011 IEEE INT C ROB
[7]   A fully autonomous microrobotic endoscopy system [J].
Asari, VK ;
Kumar, S ;
Kassim, IM .
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2000, 28 (04) :325-341
[8]   Robust Heteroclinic Behaviour, Synchronization, and Ratcheting of Coupled Oscillators [J].
Ashwin, Peter ;
Karabacak, Oezkan .
DYNAMICS, GAMES AND SCIENCE II, 2011, 2 :125-140
[9]  
Azad M, 2010, P AUSTR C ROB AUT
[10]  
Bender J., 2006, P 19 INT C COMPUTER, P3