A Sears-type self-adjointness result for discrete magnetic Schrodinger operators

被引:11
作者
Milatovic, Ognjen [1 ]
机构
[1] Univ N Florida, Dept Math & Stat, Jacksonville, FL 32224 USA
关键词
Bounded vertex degree; Discrete magnetic Schrodinger operator; Essential self-adjointness; Infinite graph; Sears-type result; SPECTRAL PROPERTIES; GRAPHS; COMPLETENESS; LAPLACIANS; INEQUALITY; DIRICHLET;
D O I
10.1016/j.jmaa.2012.07.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the context of a weighted graph with vertex set V and bounded vertex degree, we give a sufficient condition for the essential self-adjointness of the operator Delta(sigma) + W, where Delta(sigma) is the magnetic Laplacian and W: V -> R is a function satisfying W(x) >= -q(x) for all X is an element of V, with q: V -> [ 1, infinity). The condition is expressed in terms of completeness of a metric that depends on q and the weights of the graph. The main result is a discrete analogue of the results of I. Oleinik and M.A. Shubin in the setting of non-compact Riemannian manifolds. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:801 / 809
页数:9
相关论文
共 38 条
[31]  
Sushch V.N., 2009, J MATH SCI, V160, P368
[32]  
SY PW, 1992, NAGOYA MATH J, V125, P141
[33]   ON THE UNIQUENESS OF THE GREEN FUNCTION ASSOCIATED WITH A 2ND-ORDER DIFFERENTIAL EQUATION [J].
TITCHMARSH, EC .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1949, 1 (02) :191-198
[34]  
Torki-Hamza N., 2010, CONFLUENTES MATH, V2, P333
[35]   Analysis of the physical Laplacian and the heat flow on a locally finite graph [J].
Weber, Andreas .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 370 (01) :146-158
[36]  
Woess W., 2000, CAMBRIDGE TRACTS MAT, DOI 10.1017/CBO9780511470967
[37]   Heat Kernel and Essential Spectrum of Infinite Graphs [J].
Wojciechowski, Radoslaw K. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (03) :1419-1441
[38]  
Wojciechowski Radoslaw Krzysztof, 2008, Thesis (Ph.D.)