Higher-order approximate solutions for nonlinear vibration of a constant-tension string

被引:6
作者
Lai, S. K. [1 ]
Xiang, Y. [1 ]
Lim, C. W. [2 ]
He, X. F. [3 ]
Zeng, Q. C. [4 ]
机构
[1] Univ Western Sydney, Sch Engn, Penrith, NSW 1797, Australia
[2] City Univ Hong Kong, Dept Bldg & Construct, Kowloon, Hong Kong, Peoples R China
[3] Dongfang Elect Autocontrol Engn Co Ltd, Deyang 618201, Sichuan, Peoples R China
[4] Johnton Sci & Technol Grp Hong Kong Ltd, Kowloon, Hong Kong, Peoples R China
关键词
D O I
10.1016/j.jsv.2008.05.003
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A new harmonic balance approach for solving the large amplitude nonlinear vibration of a constant-tension string is introduced. The coupling of Newton's method with harmonic balancing takes the advantage of reducing the deficiency and complexity of the classical harmonic balance method in dealing with the nonlinear systems. The solutions are directly induced from a set of linear algebraic equations instead of it set of complicated, coupled nonlinear algebraic equations. Illustrative examples are selected and compared to some published data to verify the accuracy of the higher-order solutions. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:440 / 448
页数:9
相关论文
共 11 条
[1]  
Coulson C. A., 1955, WAVES
[2]  
Coulson C.A., 1977, WAVES, V2nd ed.
[3]   NONLINEAR VIBRATION OF A CONSTANT-TENSION STRING [J].
GOTTLIEB, HPW .
JOURNAL OF SOUND AND VIBRATION, 1990, 143 (03) :455-460
[4]   Higher accuracy analytical approximations to the Duffing-harmonic oscillator [J].
Lim, C. W. ;
Wu, B. S. ;
Sun, W. P. .
JOURNAL OF SOUND AND VIBRATION, 2006, 296 (4-5) :1039-1045
[5]  
MICKENS RE, 1984, J SOUND VIB, V94, P456, DOI 10.1016/S0022-460X(84)80025-5
[6]   Mathematical and numerical study of the Duffing-harmonic oscillator [J].
Mickens, RE .
JOURNAL OF SOUND AND VIBRATION, 2001, 244 (03) :563-567
[7]   LARGE-AMPLITUDE VIBRATIONS OF A STRING STRETCHED UNDER A CONSTANT TENSION [J].
PILLAI, SRR ;
RAO, BN .
JOURNAL OF SOUND AND VIBRATION, 1992, 158 (01) :181-185
[8]   Moderately large amplitude vibrations of a constant tension string: a numerical experiment [J].
Rao, GV .
JOURNAL OF SOUND AND VIBRATION, 2003, 263 (01) :227-232
[9]   An analytical approximate technique for a class of strongly non-linear oscillators [J].
Wu, B. S. ;
Sun, W. P. ;
Lim, C. W. .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2006, 41 (6-7) :766-774
[10]   Improved harmonic balance approach to periodic solutions of non-linear jerk equations [J].
Wu, B. S. ;
Lim, C. W. ;
Sun, W. P. .
PHYSICS LETTERS A, 2006, 354 (1-2) :95-100