How poles of orthogonal rational functions affect their Christoffel functions

被引:2
作者
Deckers, Karl [1 ]
Lubinsky, Doron S. [2 ]
机构
[1] Katholieke Univ Leuven, Dept Comp Sci, B-3001 Heverlee, Leuven, Belgium
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Orthogonal rational functions; Christoffel functions;
D O I
10.1016/j.jat.2012.05.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that even a relatively small number of poles of a sequence of orthogonal rational functions approaching the interval of orthogonality, can prevent their Christoffel functions from having the expected asymptotics. We also establish a sufficient condition on the rate for such asymptotics, provided the rate of approach of the poles is sufficiently slow. This provides a supplement to recent results of the authors where poles were assumed to stay away from the interval of orthogonality. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1184 / 1199
页数:16
相关论文
共 6 条
[1]  
Baratchart L., 2011, MULTIPOINT SCH UNPUB
[2]  
Bultheel A., 1999, ORTHOGONAL RATIONAL
[3]  
Deckers K., ANAL APPL IN PRESS
[4]   SZEGO EXTREMUM PROBLEM ON THE UNIT-CIRCLE [J].
MATE, A ;
NEVAI, P ;
TOTIK, V .
ANNALS OF MATHEMATICS, 1991, 134 (02) :433-453
[5]  
Stahl H., 1992, GEN ORTHOGONAL POLYN, V43
[6]   Asymptotics for Christoffel functions for general measures on the real line [J].
Totik, V .
JOURNAL D ANALYSE MATHEMATIQUE, 2000, 81 (1) :283-303