Efficient Sphere Polar Decoding via Synchronous Determination

被引:9
作者
Zhou, Huayi [1 ,2 ,3 ,4 ]
Gross, Warren J. [5 ]
Zhang, Zaichen [1 ,2 ,3 ,4 ]
You, Xiaohu [1 ,2 ,3 ,4 ]
Zhang, Chuan [1 ,2 ,3 ,4 ]
机构
[1] Southeast Univ, LEADS, Nanjing 211189, Peoples R China
[2] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
[3] Southeast Univ, Quantum Informat Ctr, Nanjing 211189, Peoples R China
[4] Southeast Univ, Purple Mt Labs, Nanjing 211189, Peoples R China
[5] McGill Univ, Dept Elect & Comp Engn, Montreal, PQ H3A 0G4, Canada
关键词
Maximum likelihood decoding; Complexity theory; Signal to noise ratio; Silicon; Euclidean distance; Mobile communication; Polar codes; sphere decoding; synchronous determination;
D O I
10.1109/TVT.2020.2986915
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Sphere polar decoding can achieve the maximum likelihood (ML) bound. Existing sphere polar decoding ignores that the Euclidean distance of the frozen bits can be determined at earlier decoding levels. In this article, efficient sphere polar decoding is proposed to reduce the complexity. The set-by-set decoding process via synchronous determination is applied to the sphere polar decoding with fixed lower bounds and its multiple-searches version. Numeric results show the proposed decoding reducesmuch complexity on the low-rate codes compared with the existing sphere decoding while maintaining the same performance. At high signal-to-noise ratios, the latency of the proposed decoding is comparable with the successive cancellation list decoding.
引用
收藏
页码:6777 / 6781
页数:5
相关论文
共 50 条
[31]   Efficient Approximate ML Decoding Units for Polar List Decoders [J].
Xiong, Chenrong ;
Lin, Jun ;
Yan, Zhiyuan .
2015 IEEE INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING SYSTEMS (SIPS 2015), 2015,
[32]   Efficient Pruning for Successive-Cancellation Decoding of Polar Codes [J].
Yoo, Hoyoung ;
Park, In-Cheol .
IEEE COMMUNICATIONS LETTERS, 2016, 20 (12) :2362-2365
[33]   Efficient Soft-Cancellation Flip Decoding of Polar Codes [J].
Zhou, Yangcan ;
Qin, Zijian ;
Wang, Zhongfeng .
IEEE COMMUNICATIONS LETTERS, 2024, 28 (08) :1745-1749
[34]   MAXIMUM LIKELIHOOD DNA SEQUENCE DETECTION VIA SPHERE DECODING [J].
Wu, Ting ;
Vikalo, Haris .
2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, :586-589
[35]   Reduced Complexity Sphere Decoding via a Reordered Lattice Representation [J].
Azzam, Luay ;
Ayanoglu, Ender .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2009, 57 (09) :2564-2569
[36]   Performance of Sphere Decoding of Block Codes [J].
El-Khamy, Mostafa ;
Vikalo, Haris ;
Hassibi, Babak ;
McEliece, Robert J. .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2009, 57 (10) :2940-2950
[37]   A joint channel estimation and data detection for a MIMO wireless communication system via sphere decoding [J].
Patil G.R. ;
Kokate V.K. .
Journal of Information Processing Systems, 2017, 13 (04) :1029-1042
[38]   Soft List Decoding of Polar Codes [J].
Xiang, Luping ;
Liu, Yusha ;
Egilmez, Zeynep B. Kaykac ;
G. Maunder, Robert ;
Yang, Lie-Liang ;
Hanzo, Lajos .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (11) :13921-13926
[39]   Deep Learning Aided Low Complex Sphere Decoding for MIMO Detection [J].
Liao, Jieyu ;
Zhao, Junhui ;
Gao, Feifei ;
Li, Geoffrey Ye .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (12) :8046-8059
[40]   New MIMO ARQ protocols and joint detection via sphere decoding [J].
Samra, H ;
Ding, Z .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (02) :473-482