Solving a chemotaxis-haptotaxis system in 2D using Generalized Finite Difference Method

被引:16
|
作者
Benito, J. J. [1 ]
Garcia, A. [1 ]
Gavete, L. [2 ]
Negreanu, M. [3 ]
Urena, F. [1 ]
Vargas, A. M. [3 ]
机构
[1] UNED, ETSII, Madrid, Spain
[2] UPM, ETSIM, Madrid, Spain
[3] UCM, Dept Anal Matemat & Matemat Aplicada, Madrid, Spain
关键词
Chemotaxis-haptotaxis; Generalized Finite Differences; Meshless method; CLASSICAL-SOLUTIONS; GLOBAL EXISTENCE; EQUATIONS; INVASION; TISSUE; MODEL;
D O I
10.1016/j.camwa.2020.05.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a mathematical model of cancer cell invasion of tissue (extracellular matrix) consisting of a system of reaction-diffusion-taxis partial differential equations which describes the interactions between cancer cells, the matrix degrading enzyme and the host tissue. We analyze the local stability of the constant equilibrium solutions to the chemotaxis-haptotaxis system, we derive a discretization of the system by means of the Generalized Finite Difference Method (GFDM) and we prove the convergence of the discrete solution to the analytical one. Also, we provide several numerical examples on the applications of this meshless method over regular and irregular domains. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:762 / 777
页数:16
相关论文
共 50 条
  • [1] On the convergence of the generalized finite difference method for solving a chemotaxis system with no chemical diffusion
    J. J. Benito
    A. García
    L. Gavete
    M. Negreanu
    F. Ureña
    A. M. Vargas
    Computational Particle Mechanics, 2021, 8 : 625 - 636
  • [2] On the convergence of the generalized finite difference method for solving a chemotaxis system with no chemical diffusion
    Benito, J. J.
    Garcia, A.
    Gavete, L.
    Negreanu, M.
    Urena, F.
    Vargas, A. M.
    COMPUTATIONAL PARTICLE MECHANICS, 2021, 8 (03) : 625 - 636
  • [3] Solving a fully parabolic chemotaxis system with periodic asymptotic behavior using Generalized Finite Difference Method
    Benito, J. J.
    Garcia, A.
    Gavete, L.
    Negreanu, M.
    Urena, F.
    Vargas, A. M.
    APPLIED NUMERICAL MATHEMATICS, 2020, 157 : 356 - 371
  • [4] Solving Eikonal equation in 2D and 3D by generalized finite difference method
    Salete, Eduardo
    Flores, Jesus
    Garcia, Angel
    Negreanu, Mihaela
    Vargas, Antonio M.
    Urena, Francisco
    COMPUTATIONAL AND MATHEMATICAL METHODS, 2021, 3 (06)
  • [5] Global solvability of a chemotaxis-haptotaxis model in the whole 2-d space
    Liu, Meng
    Li, Yuxiang
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (04) : 7565 - 7593
  • [6] A new result for 2D boundedness of solutions to a chemotaxis-haptotaxis model with/without sub-logistic source
    Xiang, Tian
    Zheng, Jiashan
    NONLINEARITY, 2019, 32 (12) : 4890 - 4911
  • [7] Solving Monge-Ampere equation in 2D and 3D by Generalized Finite Difference Method
    Benito, J. J.
    Garcia, A.
    Gavete, L.
    Negreanu, M.
    Urena, F.
    Vargas, A. M.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2021, 124 (124) : 52 - 63
  • [8] A generalized finite difference method for 2D dynamic crack analysis
    Ju, Bingrui
    Yu, Boyang
    Zhou, Zhiyuan
    RESULTS IN APPLIED MATHEMATICS, 2024, 21
  • [9] A meshless generalized finite difference method for 2D elasticity problems
    Hidayat, Mas Irfan P.
    Widyastuti
    Fajarin, Rindang
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2020, 117 : 89 - 103
  • [10] A meshless generalized finite difference method for 2D elasticity problems
    Hidayat, Mas Irfan P.
    Widyastuti
    Fajarin, Rindang
    Engineering Analysis with Boundary Elements, 2020, 117 : 89 - 103