Numerical method for the estimation of the fractional parameters in the fractional mobile/immobile advection-diffusion model

被引:13
作者
Yu, Bo [1 ]
Jiang, Xiaoyun [2 ]
Qi, Haitao [1 ]
机构
[1] Shandong Univ, Sch Math & Stat, Weihai 264209, Weihai, Peoples R China
[2] Shandong Univ, Sch Math, Jinan, Shandong, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Fractional mobile; immobile advection-diffusion model; finite difference; stability and convergence; fractional sensitivity matrix; parameter estimation; ANOMALOUS DIFFUSION; DIFFERENTIAL-EQUATIONS; SOLUTE TRANSPORT; INVERSE PROBLEM; ORDER; TIME; HEAT; SUBDIFFUSION; APPROXIMATION;
D O I
10.1080/00207160.2017.1378811
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we mainly investigate the numerical identification of the fractional parameters in the fractional mobile/immobile advection-diffusion model. For the direct problem, two efficient numerical schemes with second-order spatial accuracy and fourth-order spatial accuracy are derived, respectively. The unconditional stability and convergence of the numerical schemes are analysed rigorously by the Fourier analysis method. For the inverse problem, we first propose a novel numerical scheme to compute the fractional sensitivity matrix, and then employ the nonlinear Levenberg-Marquardt iterative method to estimate the fractional parameters. Finally, numerical examples are given to illustrate the effectiveness and accuracy of the proposed numerical schemes, and the numerical identification of the fractional parameters is also presented in tabular form, which demonstrate the effectiveness of the proposed numerical method for the identification of the fractional parameters in the fractional mobile/immobile advection-diffusion model.
引用
收藏
页码:1131 / 1150
页数:20
相关论文
共 38 条
[1]  
Abdelkawy MA, 2015, ROM REP PHYS, V67, P773
[2]  
[Anonymous], 2000, Applications of Fractional Calculus in Physics
[3]  
[Anonymous], 1974, The fractional calculus theory and applications of differentiation and integration to arbitrary order, DOI DOI 10.1016/S0076-5392(09)60219-8
[4]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[5]  
Baleanu D, 2012, Fractional Calculus: Models and Numerical Methods
[6]   Solving an inverse heat conduction problem using a non-integer identified model [J].
Battaglia, JL ;
Cois, O ;
Puigsegur, L ;
Oustaloup, A .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2001, 44 (14) :2671-2680
[7]   Finite difference methods and a fourier analysis for the fractional reaction-subdiffusion equation [J].
Chen, Chang-ming ;
Liu, F. ;
Burrage, K. .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 198 (02) :754-769
[8]   FAST FINITE DIFFERENCE APPROXIMATION FOR IDENTIFYING PARAMETERS IN A TWO-DIMENSIONAL SPACE-FRACTIONAL NONLOCAL MODEL WITH VARIABLE DIFFUSIVITY COEFFICIENTS [J].
Chen, S. ;
Liu, F. ;
Jiang, X. ;
Turner, I. ;
Burrage, K. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (02) :606-624
[9]   Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation [J].
Cheng, Jin ;
Nakagawa, Junichi ;
Yamamoto, Masahiro ;
Yamazaki, Tomohiro .
INVERSE PROBLEMS, 2009, 25 (11)
[10]   Analytical solutions for coupling fractional partial differential equations with Dirichlet boundary conditions [J].
Ding, Xiao-Li ;
Nieto, Juan J. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 52 :165-176