Bragg Peak Localization with Piezoelectric Sensors for Proton Therapy Treatment

被引:5
作者
Otero, Jorge [1 ]
Felis, Ivan [2 ]
Herrero, Alicia [3 ]
Merchan, Jose A. [4 ]
Ardid, Miguel [1 ]
机构
[1] Univ Politecn Valencia UPV, Inst Invest Gestio Integrada Zones Costaneres IGI, Valencia 46730, Spain
[2] Ctr Tecnol Naval & Mar CTN, Murcia 30320, Spain
[3] Univ Politecn Valencia UPV, Inst Matemat Multidisciplinar, Valencia 46022, Spain
[4] Univ Pedag & Tecnol Colombia UPTC, Grp Fis Nucl Aplicada & Simulac, Tunja 150003, Colombia
关键词
piezoelectric sensors; hadrontherapy; monitoring Bragg peak; FEM method; Monte Carlo simulations; BEAM THERAPY; MONTE-CARLO; GEANT4; SIMULATION; VERIFICATION;
D O I
10.3390/s20102987
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A full chain simulation of the acoustic hadrontherapy monitoring for brain tumours is presented in this work. For the study, a proton beam of 100 MeV is considered. In the first stage, Geant4 is used to simulate the energy deposition and to study the behaviour of the Bragg peak. The energy deposition in the medium produces local heating that can be considered instantaneous with respect to the hydrodynamic time scale producing a sound pressure wave. The resulting thermoacoustic signal has been subsequently obtained by solving the thermoacoustic equation. The acoustic propagation has been simulated by FEM methods in the brain and the skull, where a set of piezoelectric sensors are placed. Last, the final received signals in the sensors have been processed in order to reconstruct the position of the thermal source and, thus, to determine the feasibility and accuracy of acoustic beam monitoring in hadrontherapy.
引用
收藏
页数:12
相关论文
共 44 条
  • [1] Adrian-Martinez S., 2015, Ad-hoc Networks and Wireless. ADHOC-NOW 2014 International Workshops ETSD, MARSS, MWaoN, SecAN, SSPA, and WiSARN. Revised Selected Papers: LNCS 8629, P66, DOI 10.1007/978-3-662-46338-3_7
  • [2] Theoretical detection threshold of the proton-acoustic range verification technique
    Ahmad, Moiz
    Xiang, Liangzhong
    Yousefi, Siavash
    Xing, Lei
    [J]. MEDICAL PHYSICS, 2015, 42 (10) : 5735 - 5744
  • [3] Accelerators for hadrontherapy: From Lawrence cyclotrons to linacs
    Amaldi, U.
    Bonomi, R.
    Braccini, S.
    Crescenti, M.
    Degiovanni, A.
    Garlasche, M.
    Garonna, A.
    Magrin, G.
    Mellace, C.
    Pearce, P.
    Pitta, G.
    Puggioni, P.
    Rosso, E.
    Andres, S. Verdu
    Wegner, R.
    Weiss, M.
    Zennaro, R.
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2010, 620 (2-3) : 563 - 577
  • [4] Amaldi U., 2018, ADV PARTICLE THERAPY, P28
  • [5] Amaldi U., 2008, RIV MED, V14, P7
  • [6] [Anonymous], 2011, PROG NUCL SCI TECHNO, DOI [10.15669/pnst.2.207, DOI 10.15669/PNST.2.207]
  • [7] [Anonymous], 2018, AC MOD US GUID
  • [8] Optimization of Dimensions of Cylindrical Piezoceramics as Radio-Clean Low Frequency Acoustic Sensors
    Ardid, M.
    Felis, I.
    Martinez-Mora, J. A.
    Otero, J.
    [J]. JOURNAL OF SENSORS, 2017, 2017
  • [9] Verification of the dose distributions with GEANT4 simulation for proton therapy
    Aso, T
    Kimura, A
    Tanaka, S
    Yoshida, H
    Kanematsu, N
    Sasaki, T
    Akagi, T
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2005, 52 (04) : 896 - 901
  • [10] Aso T., 2007, P IEEE NUCL SCI S HO