Manganese Metaphosphate Mn(PO3)2as a High-Performance Negative Electrode Material for Lithium-Ion Batteries

被引:7
作者
Xia, Qingbo [1 ,2 ]
Naeyaert, Pierre J. P. [1 ]
Avdeev, Maxim [1 ,2 ]
Schmid, Siegbert [1 ]
Liu, Hongwei [3 ]
Johannessen, Bernt [4 ]
Ling, Chris D. [1 ]
机构
[1] Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia
[2] Australian Nucl Sci & Technol Org, Australian Ctr Neutron Scattering, Kirrawee 2232, Australia
[3] Univ Sydney, Australian Ctr Microscopy & Microanal, Sydney, NSW 2006, Australia
[4] Australian Nucl Sci & Technol Org, Australian Synchrotron, Clayton, Vic 3168, Australia
来源
CHEMELECTROCHEM | 2020年 / 7卷 / 13期
基金
澳大利亚研究理事会;
关键词
lithium-ion batteries; conversion electrode; manganese (II) metaphosphate; nanograins; RAY-ABSORPTION SPECTROSCOPY; OF-THE-ART; CONVERSION REACTION; ANODE MATERIALS; LI; CHALLENGES; STATE; GRAPHENE; SPECTRA; STORAGE;
D O I
10.1002/celc.202000389
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
We report a novel negative conversion electrode material, manganese (II) metaphosphate Mn(PO3)(2). This compound can be synthesized by a facile solid-state method, and after carbon-coating delivers an attractively high reversible capacity of 477 mAh/g at 0.1 C and 385 mAh/g at 1 C. We investigated the reaction mechanism with a combination ofex situX-ray absorption spectroscopy,in situX-ray diffraction, and high-resolution transmission electron microscopy. We observed a direct conversion process by monitoring the first dischargein operando, in which Mn(PO3)(2)reacts with Li to give fusiform Mn nanograins a few angstrom ngstroms in width, embedded in a matrix of lithium conducting LiPO(3)glass. Due to the fine nanostructures of the conversion products, this conversion reaction is completely reversible.
引用
收藏
页码:2831 / 2837
页数:7
相关论文
共 41 条
  • [1] The Development and Future of Lithium Ion Batteries
    Blomgren, George E.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (01) : A5019 - A5025
  • [2] Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions
    Cabana, Jordi
    Monconduit, Laure
    Larcher, Dominique
    Rosa Palacin, M.
    [J]. ADVANCED MATERIALS, 2010, 22 (35) : E170 - E192
  • [3] Graphene and graphene-based composites as Li-ion battery electrode materials and their application in full cells
    Cai, Xiaoyi
    Lai, Linfei
    Shen, Zexiang
    Lin, Jianyi
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (30) : 15423 - 15446
  • [4] The TOPAS symbolic computation system
    Coelho, A. A.
    Evans, John S. O.
    Evans, Ivana R.
    Kern, A.
    Parsons, S.
    [J]. POWDER DIFFRACTION, 2011, 26 : S22 - S25
  • [5] Understanding structural changes in NMC Li-ion cells by in situ neutron diffraction
    Dolotko, O.
    Senyshyn, A.
    Muehlbauer, M. J.
    Nikolowski, K.
    Ehrenberg, H.
    [J]. JOURNAL OF POWER SOURCES, 2014, 255 : 197 - 203
  • [6] Electrical Energy Storage for the Grid: A Battery of Choices
    Dunn, Bruce
    Kamath, Haresh
    Tarascon, Jean-Marie
    [J]. SCIENCE, 2011, 334 (6058) : 928 - 935
  • [7] Challenges in the development of advanced Li-ion batteries: a review
    Etacheri, Vinodkumar
    Marom, Rotem
    Elazari, Ran
    Salitra, Gregory
    Aurbach, Doron
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) : 3243 - 3262
  • [8] Reduced Graphene Oxide Wrapped FeS Nanocomposite for Lithium-Ion Battery Anode with Improved Performance
    Fei, Ling
    Lin, Qianglu
    Yuan, Bin
    Chen, Gen
    Xie, Pu
    Li, Yuling
    Xu, Yun
    Deng, Shuguang
    Smirnov, Sergei
    Luo, Hongmei
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (11) : 5330 - 5335
  • [9] NiP3: a promising negative electrode for Li- and Na-ion batteries
    Fullenwarth, J.
    Darwiche, A.
    Soares, A.
    Donnadieu, B.
    Monconduit, L.
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (07) : 2050 - 2059
  • [10] Glaum R, 2002, Z ANORG ALLG CHEM, V628, P2800, DOI 10.1002/1521-3749(200212)628:12<2800::AID-ZAAC2800>3.0.CO