Evolutionary stability of ideal free nonlocal dispersal

被引:40
作者
Cosner, Chris [1 ]
Davila, Juan [2 ,3 ]
Martinez, Salome [2 ,3 ]
机构
[1] Univ Miami, Dept Math, Coral Gables, FL 33124 USA
[2] Univ Chile, Ctr Modelamiento Matemat, UMI CNRS 2807, Santiago, Chile
[3] Univ Chile, Dept Ingn Matemat, Santiago, Chile
基金
美国国家科学基金会;
关键词
nonlocal dispersal; intergrodifferential equations; ideal free distribution; evolutionarily stable strategy; evolution of dispersal; DYNAMICS; UNIQUENESS; EXISTENCE; EQUATION; MODELS;
D O I
10.1080/17513758.2011.588341
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
We study the evolutionary stability of nonlocal dispersal strategies that can produce ideal free population distributions, that is, distributions where all individuals have equal fitness and there is no net movement of individuals at equilibrium. We find that the property of producing ideal free distributions is necessary and often sufficient for evolutionary stability. Our results extend those already developed for discrete diffusion models on finite patch networks to the case of nonlocal dispersal models based on integrodifferential equations. The analysis is based on the use of comparison methods and the construction of sub-and supersolutions.
引用
收藏
页码:395 / 405
页数:11
相关论文
共 27 条
[1]   Spatial dynamics of communities with intraguild predation: The role of dispersal strategies [J].
Amarasekare, Priyanga .
AMERICAN NATURALIST, 2007, 170 (06) :819-831
[2]   Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal [J].
Bates, Peter W. ;
Zhao, Guangyu .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 332 (01) :428-440
[3]  
Cantrell R. S., 2009, SPATIAL ECOLOGY, P213, DOI DOI 10.1201/9781420059861.CH11
[4]  
Cantrell R. S., 2003, SPATIAL ECOLOGY VIA
[5]  
Cantrell Robert Stephen, 2007, Journal of Biological Dynamics, V1, P249, DOI 10.1080/17513750701450227
[6]   EVOLUTION OF DISPERSAL AND THE IDEAL FREE DISTRIBUTION [J].
Cantrell, Robert Stephen ;
Cosner, Chris ;
Lou, Yuan .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2010, 7 (01) :17-36
[7]  
Clobert J., 2001, Dispersal
[8]   A nonlocal inhomogeneous dispersal process [J].
Cortazar, C. ;
Coville, J. ;
Elgueta, M. ;
Martinez, S. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 241 (02) :332-358
[9]  
Cosner C, 2008, LECT NOTES MATH, V1922, P77
[10]   A dynamic model for the ideal-free distribution as a partial differential equation [J].
Cosner, C .
THEORETICAL POPULATION BIOLOGY, 2005, 67 (02) :101-108