Modulating the prestrain history to optimize strength and ductility in CoCrFeMnNi high-entropy alloy

被引:72
作者
Sun, S. J. [1 ,2 ]
Tian, Y. Z. [3 ]
Lin, H. R. [1 ,2 ]
Lu, S. [4 ]
Yang, H. J. [1 ]
Zhang, Z. F. [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Met Res, Mat Fatigue & Fracture Div, Shenyang 110016, Liaoning, Peoples R China
[2] Univ Sci & Technol China, Sch Mat Sci & Engn, Hefei 230026, Anhui, Peoples R China
[3] Northeastern Univ, Sch Mat Sci & Engn, Minist Educ, Key Lab Anisotropy & Texture Mat, Shenyang 110819, Liaoning, Peoples R China
[4] Royal Inst Technol, Dept Mat Sci & Engn, Appl Mat Phys, SE-10044 Stockholm, Sweden
基金
中国国家自然科学基金;
关键词
High-entropy alloy; Prestrain; Temperature; Yield strength; Elongation; CYCLE FATIGUE PROPERTIES; TENSILE PROPERTIES; PRE-STRAIN; BEHAVIOR; PLASTICITY; MICROSTRUCTURE; DEFORMATION; MECHANISMS; EVOLUTION; DESIGN;
D O I
10.1016/j.scriptamat.2019.01.012
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
CoCrFeMnNi high-entropy alloy (HEA) exhibits excellent combination of strength and ductility, but low yield strength. In order to ameliorate the mechanical properties, prestrain was applied in this work. The HEA prestrained at 77 K possesses higher yield strength and uniform elongation than the HEA prestrained at 293 K, indicating that the trade-off relationship between strength and ductility can be broken by modulating the prestrain history. Furthermore, the yield point phenomenon was disappeared after prestrained at 77 K. This can be related to the density and distribution of dislocations as imposed in the prestrain process at 293 K and 77 K. (C) 2019 Acta Materialia Inc Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:111 / 115
页数:5
相关论文
共 39 条
[1]   BCC-FCC interfacial effects on plasticity and strengthening mechanisms in high entropy alloys [J].
Basu, Indranil ;
Ocelik, Vaclav ;
De Hosson, Jeff ThM. .
ACTA MATERIALIA, 2018, 157 :83-95
[2]   Size dependent plasticity and damage response in multiphase body centered cubic high entropy alloys [J].
Basu, Indranil ;
Ocelik, Vaclav ;
De Hosson, Jeff Th M. .
ACTA MATERIALIA, 2018, 150 :104-116
[3]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[4]   Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility [J].
Chen, Ruirun ;
Qin, Gang ;
Zheng, Huiting ;
Wang, Liang ;
Su, Yanqing ;
Chiu, YuLung ;
Ding, Hongsheng ;
Guo, Jingjie ;
Fu, Hengzhi .
ACTA MATERIALIA, 2018, 144 :129-137
[5]   Hexagonal High-entropy Alloys [J].
Feuerbacher, Michael ;
Heidelmann, Markus ;
Thomas, Carsten .
MATERIALS RESEARCH LETTERS, 2015, 3 (01) :1-6
[6]   Engineering heterostructured grains to enhance strength in a single-phase high-entropy alloy with maintained ductility [J].
Fu, Zhiqiang ;
MacDonald, Benjamin E. ;
Li, Zhiming ;
Jiang, Zhenfei ;
Chen, Weiping ;
Zhou, Yizhang ;
Lavernia, Enrique J. .
MATERIALS RESEARCH LETTERS, 2018, 6 (11) :634-640
[7]   Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy [J].
Fu, Zhiqiang ;
Chen, Weiping ;
Wen, Haiming ;
Zhang, Dalong ;
Chen, Zhen ;
Zheng, Baolong ;
Zhou, Yizhang ;
Lavernia, Enrique J. .
ACTA MATERIALIA, 2016, 107 :59-71
[8]   Tensile properties of high- and medium-entropy alloys [J].
Gali, A. ;
George, E. P. .
INTERMETALLICS, 2013, 39 :74-78
[9]   A fracture-resistant high-entropy alloy for cryogenic applications [J].
Gludovatz, Bernd ;
Hohenwarter, Anton ;
Catoor, Dhiraj ;
Chang, Edwin H. ;
George, Easo P. ;
Ritchie, Robert O. .
SCIENCE, 2014, 345 (6201) :1153-1158
[10]   A precipitation-hardened high-entropy alloy with outstanding tensile properties [J].
He, J. Y. ;
Wang, H. ;
Huang, H. L. ;
Xu, X. D. ;
Chen, M. W. ;
Wu, Y. ;
Liu, X. J. ;
Nieh, T. G. ;
An, K. ;
Lu, Z. P. .
ACTA MATERIALIA, 2016, 102 :187-196