Spherical versus Faceted Anatase TiO2 Nanoparticles: A Model Study of Structural and Electronic Properties

被引:59
作者
Fazio, Gianluca [1 ]
Ferrighi, Lara [1 ]
Di Valentin, Cristiana [1 ]
机构
[1] Univ Milano Bicocca, Dipartimento Sci Mat, I-20125 Milan, Italy
基金
欧洲研究理事会;
关键词
TITANIUM-DIOXIDE NANOPARTICLES; PHASE-STABILITY; NANOMATERIALS; NANOCRYSTALS; MORPHOLOGY; SHAPE; PHOTOCATALYSIS; NANOSTRUCTURES; SURFACES; TITANATE;
D O I
10.1021/acs.jpcc.5b06384
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
TiO2 nanoparticles are fundamental building blocks of many TiO2-based technologies. However, most of the computational studies simulate either bulk or surface titania. Structural and electronic properties of nanoparticles are expected to differ much from extended systems. Moreover, nanoparticles of different size and shape may also present peculiar features. In this study we compare nanocrystals and nanospheres of various sizes (up to a diameter of 3 nm) in order to highlight analogies and differences. In particular, we focus the attention on the surface-to-bulk sites ratio, the surface sites coordination distribution, the atomic distortions or curvature, and the surface energies from the structural point of view. Regarding the electronic properties, we investigate the difference between Kohn-Sham and fundamental gaps of these finite-sized systems, the frontiers orbitals space distribution, ionization potentials, and electron affinities, and finally, the densities of states projected on the various coordination sites present in the nanoparticles. This detailed analysis proves that faceted and spherical nanopartides present different structural and electronic properties, which make each of them better suited for different uses and applications.
引用
收藏
页码:20735 / 20746
页数:12
相关论文
共 39 条
[1]   The Kohn-Sham gap, the fundamental gap and the optical gap: the physical meaning of occupied and virtual Kohn-Sham orbital energies [J].
Baerends, E. J. ;
Gritsenko, O. V. ;
van Meer, R. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (39) :16408-16425
[2]   Titanium Dioxide Nanomaterials for Sensor Applications [J].
Bai, Jing ;
Zhou, Baoxue .
CHEMICAL REVIEWS, 2014, 114 (19) :10131-10176
[3]   Titanium Dioxide Nanomaterials for Photovoltaic Applications [J].
Bai, Yu ;
Mora-Sero, Ivan ;
De Angelis, Filippo ;
Bisquert, Juan ;
Wang, Peng .
CHEMICAL REVIEWS, 2014, 114 (19) :10095-10130
[4]   Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry [J].
Barnard, AS ;
Curtiss, LA .
NANO LETTERS, 2005, 5 (07) :1261-1266
[5]   Effects of particle morphology and surface hydrogenation on the phase stability of TiO2 -: art. no. 235403 [J].
Barnard, AS ;
Zapol, P .
PHYSICAL REVIEW B, 2004, 70 (23) :1-13
[6]   Predicting the energetics, phase stability, and morphology evolution of faceted and spherical anatase nanocrystals [J].
Barnard, AS ;
Zapol, P .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (48) :18435-18440
[7]   Protonated titanates and TiO2 nanostructured materials:: Synthesis, properties, and applications [J].
Bavykin, Dmitry V. ;
Friedrich, Jens M. ;
Walsh, Frank C. .
ADVANCED MATERIALS, 2006, 18 (21) :2807-2824
[8]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[9]   STRUCTURAL ELECTRONIC RELATIONSHIPS IN INORGANIC SOLIDS - POWDER NEUTRON-DIFFRACTION STUDIES OF THE RUTILE AND ANATASE POLYMORPHS OF TITANIUM-DIOXIDE AT 15 AND 295-K [J].
BURDETT, JK ;
HUGHBANKS, T ;
MILLER, GJ ;
RICHARDSON, JW ;
SMITH, JV .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1987, 109 (12) :3639-3646
[10]   Solution-Phase Synthesis of Titanium Dioxide Nanoparticles and Nanocrystals [J].
Cargnello, Matteo ;
Gordon, Thomas R. ;
Murray, Christopher B. .
CHEMICAL REVIEWS, 2014, 114 (19) :9319-9345