Evaluation of a commercial exogenous internal process control for diagnostic RNA virus metagenomics from different animal clinical samples

被引:13
作者
Van Borm, Steven [1 ]
Fu, Qiang [2 ]
Winand, Raf [2 ]
Vanneste, Kevin [2 ]
Hakhverdyan, Mikhayil [3 ]
Hoeper, Dirk [4 ]
Vandenbussche, Frank [1 ]
机构
[1] Sciensano, Dept Anim Infect Dis, Groeselenbergstr 99, B-1180 Brussels, Belgium
[2] Sciensano, Transversal Act Appl Genom, Rue Juliette Wytsmanstr 14, B-1050 Brussels, Belgium
[3] SVA, Natl Vet Inst, Ulls Vag 2B, S-75189 Uppsala, Sweden
[4] Friedrich Loffler Inst, FLI, Sudufer 10, D-17493 Greifswald, Germany
基金
欧盟地平线“2020”;
关键词
Diagnostic metagenomics; Virology; Next-generation sequencing; Quality control; Mengovirus; READ ALIGNMENT; DISCOVERY; MENGOVIRUS;
D O I
10.1016/j.jviromet.2020.113916
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Metagenomic next generation sequencing (mNGS) is increasingly recognized as an important complementary tool to targeted human and animal infectious disease diagnostics. It is, however, sensitive to biases and errors that are currently not systematically evaluated by the implementation of quality controls (QC) for the diagnostic use of mNGS. We evaluated a commercial reagent (Mengovirus extraction control kit, CeraamTools, bioMerieux) as an exogenous internal control for mNGS. It validates the integrity of reagents and workflow, the efficient isolation of viral nucleic acids and the absence of inhibitors in individual samples (verified using a specific qRTPCR). Moreover, it validates the efficient generation of viral sequence data in individual samples (verified by normalized mengoviral read counts in the metagenomic analysis). We show that when using a completely random metagenomics workflow: (1) Mengovirus RNA can be reproducibly detected in different animal sample types (swine feces and sera, wild bird cloacal swabs), except for tissue samples (swine lung); (2) the Mengovirus control kit does not contain other contaminating viruses that may affect metagenomic experiments (using a cutoff of minimum 1 Kraken classified read per million (RPM)); (3) the addition of 2.17x10(6) Mengovirus copies/mL of sample does not affect the virome composition of pig fecal samples or wild bird cloacal swab samples; (4) Mengovirus Cq values (using as cutoff the upper limit of the 99 % confidence interval of Cq values for a given sample matrix) allow the identification of samples with poor viral RNA extraction or high inhibitor load; (5) Mengovirus normalized read counts (cutoff RPM > 1) allow the identification of samples where the viral sequences are outcompeted by host or bacterial target sequences in the random metagenomic workflow. The implementation of two QC testing points, a first one after RNA extraction (Mengoviral qRT-PCR) and a second one after metagenomic data analysis provide valuable information for the validation of individual samples and results. Their implementation in addition to external controls validating runs or experiments should be carefully considered for a given sample type and workflow.
引用
收藏
页数:10
相关论文
共 40 条
  • [1] Contaminating viral sequences in high-throughput sequencing viromics: a linkage study of 700 sequencing libraries
    Asplund, M.
    Kjartansdottir, K. R.
    Mollerup, S.
    Vinner, L.
    Fridholm, H.
    Herrera, J. A. R.
    Friis-Nielsen, J.
    Hansen, T. A.
    Jensen, R. H.
    Nielsen, I. B.
    Richter, S. R.
    Rey-Iglesia, A.
    Matey-Hernandez, M. L.
    Alquezar-Planas, D. E.
    Olsen, P. V. S.
    Sicheritz-Ponten, T.
    Willerslev, E.
    Lund, O.
    Brunak, S.
    Mourier, T.
    Nielsen, L. P.
    Izarzugaza, J. M. G.
    Hansen, A. J.
    [J]. CLINICAL MICROBIOLOGY AND INFECTION, 2019, 25 (10) : 1277 - 1285
  • [2] Quality control implementation for universal characterization of DNA and RNA viruses in clinical respiratory samples using single metagenomic next-generation sequencing workflow
    Bal, A.
    Pichon, M.
    Picard, C.
    Casalegno, J. S.
    Valette, M.
    Schuffenecker, I.
    Billard, L.
    Vallet, S.
    Vilchez, G.
    Cheynet, V.
    Oriol, G.
    Trouillet-Assant, S.
    Gillet, Y.
    Lina, B.
    Brengel-Pesce, K.
    Morfin, F.
    Josset, L.
    [J]. BMC INFECTIOUS DISEASES, 2018, 18
  • [3] Viral Metagenomic Analysis Displays the Co-Infection Situation in Healthy and PMWS Affected Pigs
    Blomstrom, Anne-Lie
    Fossum, Caroline
    Wallgren, Per
    Berg, Mikael
    [J]. PLOS ONE, 2016, 11 (12):
  • [4] Trimmomatic: a flexible trimmer for Illumina sequence data
    Bolger, Anthony M.
    Lohse, Marc
    Usadel, Bjoern
    [J]. BIOINFORMATICS, 2014, 30 (15) : 2114 - 2120
  • [5] Sensitivity of Next-Generation Sequencing Metagenomic Analysis for Detection of RNA and DNA Viruses in Cerebrospinal Fluid: The Confounding Effect of Background Contamination
    Bukowska-Osko, Iwona
    Perlejewski, Karol
    Nakamura, Shota
    Motooka, Daisuke
    Stokowy, Tomasz
    Kosinska, Joanna
    Popiel, Marta
    Ploski, Rafal
    Horban, Andrzej
    Lipowski, Dariusz
    Cortes, Kamila Caraballo
    Pawelczyk, Agnieszka
    Demkow, Urszula
    Stepien, Adam
    Radkowski, Marek
    Laskus, Tomasz
    [J]. RESPIRATORY TREATMENT AND PREVENTION, 2017, 944 : 53 - 62
  • [6] The encephalomyocarditis virus
    Carocci, Margot
    Bakkali-Kassimi, Labib
    [J]. VIRULENCE, 2012, 3 (04) : 351 - 367
  • [7] Clinical metagenomics
    Chiu, Charles Y.
    Miller, Steven A.
    [J]. NATURE REVIEWS GENETICS, 2019, 20 (06) : 341 - 355
  • [8] Conceiçao-Neto N, 2018, METHODS MOL BIOL, V1838, P85, DOI 10.1007/978-1-4939-8682-8_7
  • [9] Characterization and remediation of sample index swaps by non-redundant dual indexing on massively parallel sequencing platforms
    Costello, Maura
    Fleharty, Mark
    Abreu, Justin
    Farjoun, Yossi
    Ferriera, Steven
    Holmes, Laurie
    Granger, Brian
    Green, Lisa
    Howd, Tom
    Mason, Tamara
    Vicente, Gina
    Dasilva, Michael
    Brodeur, Wendy
    DeSmet, Timothy
    Dodge, Sheila
    Lennon, Niall J.
    Gabriel, Stacey
    [J]. BMC GENOMICS, 2018, 19
  • [10] Viral discovery as a tool for pandemic preparedness
    Epstein, J. H.
    Anthony, S. J.
    [J]. REVUE SCIENTIFIQUE ET TECHNIQUE-OFFICE INTERNATIONAL DES EPIZOOTIES, 2017, 36 (02): : 499 - 512