A PFSA Composite Membrane with Sulfonic Acid Functionalized TiO2 Nanotubes for Polymer Electrolyte Fuel Cells and Water Electrolysers

被引:6
作者
Wu, X. [1 ,2 ]
Scott, K. [1 ]
机构
[1] Newcastle Univ, Sch Chem Engn & Adv Mat, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[2] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
Composite Membrane; PEMFC; PEMWE; Polymer Electrolyte Membrane; Titanate Nanotube; Titania; ELEVATED-TEMPERATURE; TITANATE NANOTUBES;
D O I
10.1002/fuce.201200040
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Titanate nanotubes (TiO2-NT) were functionalized with sulfonic acid functional groups and characterized with Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). Results confirmed that sulfonic acid groups were grafted onto TiO2-NT with a uniform distribution. When the functionalized titanate nanotube (F-TiO2-NT) was incorporated in perfluorosulfonic acid membranes, the membrane conductivity and water uptake were improved. Polymer electrolyte membrane (PEM) fuel cells using 5wt.% F-TiO2-NT incorporated composite membrane exhibited a peak power density of 429mWcm(-2) with non-humidified O-2 at 90 degrees C, which is about four times higher than that with Nafion 117 membrane at identical conditions. PEMWE with 5wt.% F-TiO2-NT incorporated composite membrane achieved 1,000mAcm(-2) current density at voltages below 1.6V at 90 degrees C without back pressurizing.
引用
收藏
页码:1138 / 1145
页数:8
相关论文
共 18 条
[1]   Function and characterization of metal oxide-naflon composite membranes for elevated-temperature H2/O2 PEM fuel cells [J].
Adjemian, KT ;
Dominey, R ;
Krishnan, L ;
Ota, H ;
Majsztrik, P ;
Zhang, T ;
Mann, J ;
Kirby, B ;
Gatto, L ;
Velo-Simpson, M ;
Leahy, J ;
Srinivasant, S ;
Benziger, JB ;
Bocarsly, AB .
CHEMISTRY OF MATERIALS, 2006, 18 (09) :2238-2248
[2]   Protonated titanates and TiO2 nanostructured materials:: Synthesis, properties, and applications [J].
Bavykin, Dmitry V. ;
Friedrich, Jens M. ;
Walsh, Frank C. .
ADVANCED MATERIALS, 2006, 18 (21) :2807-2824
[3]   Optimization of porous current collectors for PEM water electrolysers [J].
Grigoriev, S. A. ;
Millet, P. ;
Volobuev, S. A. ;
Fateev, V. N. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (11) :4968-4973
[4]   Advances in the Development of Inorganic-Organic Membranes for Fuel Cell Applications [J].
Jones, Deborah J. ;
Roziere, Jacques .
FUEL CELLS I, 2008, 215 (01) :219-264
[5]   Functionalized titania nanotube composite membranes for high temperature proton exchange membrane fuel cells [J].
Jun, Yu ;
Zarrin, Hadis ;
Fowler, Michael ;
Chen, Zhongwei .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (10) :6073-6081
[6]   On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells [J].
Kreuer, KD .
JOURNAL OF MEMBRANE SCIENCE, 2001, 185 (01) :29-39
[7]   Nafion membranes modified with silica sulfuric acid for the elevated temperature and lower humidity operation of PEMFC [J].
Kumar, G. Gnana ;
Kim, A. R. ;
Nahm, Kee Suk ;
Elizabeth, R. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (24) :9788-9794
[8]   A poly(R1R2R3)-N+/H3PO4 composite membrane for phosphoric acid polymer electrolyte membrane fuel cells [J].
Li, Mingqiang ;
Scott, Keith ;
Wu, Xu .
JOURNAL OF POWER SOURCES, 2009, 194 (02) :811-814
[9]   Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 °C [J].
Li, QF ;
He, RH ;
Jensen, JO ;
Bjerrum, NJ .
CHEMISTRY OF MATERIALS, 2003, 15 (26) :4896-4915
[10]   Polymer electrolyte membranes containing titanate nanotubes for elevated temperature fuel cells under low relative humidity [J].
Li, Qiong ;
Xiao, Chuan ;
Zhang, Haining ;
Chen, Feitai ;
Fang, Pengfei ;
Pan, Mu .
JOURNAL OF POWER SOURCES, 2011, 196 (20) :8250-8256