Leapfrogging: primordial germ cell transplantation permits recovery of CRISPR/Cas9-induced mutations in essential genes

被引:21
作者
Blitz, Ira L. [1 ]
Fish, Margaret B. [1 ]
Cho, Ken W. Y. [1 ]
机构
[1] Univ Calif Irvine, Dept Dev & Cell Biol, 4410 Nat Sci Bldg 2, Irvine, CA 92697 USA
来源
DEVELOPMENT | 2016年 / 143卷 / 15期
关键词
CRISPR/Cas9; TALENs; Knockouts; Primordial germ cells; Genome editing; Xenopus; END MESSENGER-RNA; DAZ-LIKE GENE; XENOPUS-TROPICALIS; HOMEOBOX GENE; TARGETED MUTAGENESIS; EMBRYOS; LAEVIS; ZEBRAFISH; PLASM; SYSTEM;
D O I
10.1242/dev.138057
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
CRISPR/Cas9 genome editing is revolutionizing genetic loss-of-function analysis but technical limitations remain that slow progress when creating mutant lines. First, in conventional genetic breeding schemes, mosaic founder animals carrying mutant alleles are outcrossed to produce F1 heterozygotes. Phenotypic analysis occurs in the F2 generation following F1 intercrosses. Thus, mutant analyses will require multi-generational studies. Second, when targeting essential genes, efficient mutagenesis of founders is often lethal, preventing the acquisition of mature animals. Reducing mutagenesis levels may improve founder survival, but results in lower, more variable rates of germline transmission. Therefore, an efficient approach to study lethal mutations would be useful. To overcome these shortfalls, we introduce `leapfrogging', a method combining efficient CRISPR mutagenesis with transplantation of mutated primordial germ cells into a wild-type host. Tested using Xenopus tropicalis, we show that founders containing transplants transmit mutant alleles with high efficiency. F1 offspring from intercrosses between F0 animals that carry embryonic lethal alleles recapitulate loss-of-function phenotypes, circumventing an entire generation of breeding. We anticipate that leapfrogging will be transferable to other species.
引用
收藏
页码:2868 / 2875
页数:8
相关论文
共 70 条
  • [11] MOLECULAR NATURE OF SPEMANNS ORGANIZER - THE ROLE OF THE XENOPUS HOMEOBOX GENE GOOSECOID
    CHO, KWY
    BLUMBERG, B
    STEINBEISSER, H
    DEROBERTIS, EM
    [J]. CELL, 1991, 67 (06) : 1111 - 1120
  • [12] Production of maternal-zygotic mutant zebrafish by germ-line replacement
    Ciruna, B
    Weidinger, G
    Knaut, H
    Thisse, B
    Thisse, C
    Raz, E
    Schier, AF
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (23) : 14919 - 14924
  • [13] Germline Gene Editing in Chickens by Efficient CRISPR-Mediated Homologous Recombination in Primordial Germ Cells
    Dimitrov, Lazar
    Pedersen, Darlene
    Ching, Kathryn H.
    Yi, Henry
    Collarini, Ellen J.
    Izquierdo, Shelley
    van de lavoir, Marie-Cecile
    Leighton, Philip A.
    [J]. PLOS ONE, 2016, 11 (04):
  • [14] Driever W, 1996, DEVELOPMENT, V123, P37
  • [15] Genome Editing in Mouse Spermatogonial Stem/Progenitor Cells Using Engineered Nucleases
    Fanslow, Danielle A.
    Wirt, Stacey E.
    Barker, Jenny C.
    Connelly, Jon P.
    Porteus, Matthew H.
    Dann, Christina Tenenhaus
    [J]. PLOS ONE, 2014, 9 (11):
  • [16] Filosa S, 1997, DEVELOPMENT, V124, P2843
  • [17] EXPRESSION PATTERNS OF HERB GENES IN THE XENOPUS EMBRYO SUGGEST ROLES IN ANTEROPOSTERIOR SPECIFICATION OF THE HINDBRAIN AND IN DORSOVENTRAL PATTERNING OF THE MESODERM
    GODSAVE, S
    DEKKER, EJ
    HOLLING, T
    PANNESE, M
    BONCINELLI, E
    DURSTON, A
    [J]. DEVELOPMENTAL BIOLOGY, 1994, 166 (02) : 465 - 476
  • [18] Efficient RNA/Cas9-mediated genome editing in Xenopus tropicalis
    Guo, Xiaogang
    Zhang, Tiejun
    Hu, Zheng
    Zhang, Yanqi
    Shi, Zhaoying
    Wang, Qinhu
    Cui, Yan
    Wang, Fengqin
    Zhao, Hui
    Chen, Yonglong
    [J]. DEVELOPMENT, 2014, 141 (03): : 707 - 714
  • [19] Haffter P, 1996, DEVELOPMENT, V123, P1
  • [20] HARLAND RM, 1991, METHOD CELL BIOL, V36, P685