BOUNDEDNESS AND BLOWUP SOLUTIONS FOR QUASILINEAR PARABOLIC SYSTEMS WITH LOWER ORDER TERMS

被引:2
作者
Chen, Shaohua [1 ]
机构
[1] Cape Breton Univ, Dept Math Phys & Geol, Sydney, NS B1P 6L2, Canada
关键词
Bounded solutions; blowup solutions; quasilinear parabolic systems; lower order terms; GLOBAL EXISTENCE; DEGENERATE; NONEXISTENCE; EQUATIONS;
D O I
10.3934/cpaa.2009.8.587
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the bounded and blowup solutions of the quasilinear parabolic system u(t) = u(p) (Delta u + av) + f(u, v, Du, x) and v(t) = v(q) (Delta v + bu) + g(u, v, Dv, x) with homogeneous Dirichlet boundary condition. Under suitable conditions on the lower order terms f and g, it is shown that all solutions are bounded if (1 + c(1)) root ab < lambda(1) and blow up in a finite time if (1 + c(1)) root ab > lambda(1), where lambda(1) is the first eigenvalue of -Delta in Omega with Dirichlet data and c(1) > -1 related to f and g.
引用
收藏
页码:587 / 600
页数:14
相关论文
共 16 条
[1]   A strongly degenerate quasilinear equation:: The parabolic case [J].
Andreu, F ;
Caselles, V ;
Mazón, JM .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2005, 176 (03) :415-453
[2]   Global existence and nonexistence for some degenerate and quasilinear parabolic systems [J].
Chen, Shaohua .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (04) :1112-1136
[3]   Global existence and blowup solutions for quasilinear parabolic equations [J].
Chen, Shaohua ;
Yu, Deming .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 335 (01) :151-167
[4]   Some properties for the solutions of a general Activator-Inhibitor model [J].
Chen, Shaohua .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2006, 5 (04) :919-928
[5]   Global existence of solutions of a strongly coupled quasilinear parabolic system with applications to electrochemistry [J].
Choi, YS ;
Huan, ZD ;
Lui, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 194 (02) :406-432
[6]   Global existence and finite time blow up for a degenerate reaction-diffusion system [J].
Deng, WB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (05) :977-991
[7]   Global existence and nonexistence for a class of degenerate parabolic systems [J].
Deng, WB ;
Li, YX ;
Xie, CH .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 55 (03) :233-244
[8]   Global and blow-up solutions for non-linear degenerate parabolic systems [J].
Duan, ZW ;
Zhou, L .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2003, 26 (07) :557-587
[9]   Continuous domain dependence of the eigenvalues of the Dirichlet laplacian and related operators in Hilbert space [J].
Fuglede, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 167 (01) :183-200
[10]   Boundary value problem for a class of degenerate quasilinear parabolic equations with singularity [J].
Lei, PD ;
Wu, ZQ ;
Yin, JX .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 296 (01) :209-225