共 16 条
BOUNDEDNESS AND BLOWUP SOLUTIONS FOR QUASILINEAR PARABOLIC SYSTEMS WITH LOWER ORDER TERMS
被引:2
作者:
Chen, Shaohua
[1
]
机构:
[1] Cape Breton Univ, Dept Math Phys & Geol, Sydney, NS B1P 6L2, Canada
关键词:
Bounded solutions;
blowup solutions;
quasilinear parabolic systems;
lower order terms;
GLOBAL EXISTENCE;
DEGENERATE;
NONEXISTENCE;
EQUATIONS;
D O I:
10.3934/cpaa.2009.8.587
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
This paper deals with the bounded and blowup solutions of the quasilinear parabolic system u(t) = u(p) (Delta u + av) + f(u, v, Du, x) and v(t) = v(q) (Delta v + bu) + g(u, v, Dv, x) with homogeneous Dirichlet boundary condition. Under suitable conditions on the lower order terms f and g, it is shown that all solutions are bounded if (1 + c(1)) root ab < lambda(1) and blow up in a finite time if (1 + c(1)) root ab > lambda(1), where lambda(1) is the first eigenvalue of -Delta in Omega with Dirichlet data and c(1) > -1 related to f and g.
引用
收藏
页码:587 / 600
页数:14
相关论文