Anti-plane shear waves in periodic elastic composites: band structure and anomalous wave refraction

被引:27
作者
Nemat-Nasser, Sia [1 ]
机构
[1] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2015年 / 471卷 / 2180期
关键词
anti-plane shear waves; anomalous energy-flux and phase-velocity refraction; layered and doubly periodic composites; HARMONIC-WAVES; ANISOTROPIC MEDIA; LAYERED COMPOSITES; PROPAGATION; CRYSTALS; MATRIX;
D O I
10.1098/rspa.2015.0152
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
For anti-plane shear waves in periodic elastic composites, it is shown that negative energy refraction can be accompanied by positive phase-velocity refraction and positive energy refraction can be accompanied by negative phase-velocity refraction, and that this can happen over a broad range of frequencies. Hence, in general, negative refraction does not necessarily require antiparallel group and phase-velocity vectors. Details are given for layered composites and the results are extended to, and illustrated for, two-dimensional periodic composites, revealing a wealth of information about the refractive characteristics of this class of composites. The composite's unit cell may consist of any number of constituents of any variable mass density and elastic modulus, admitting large discontinuities. A powerful variational-based solution method is used that applies to one-, two-and three-dimensional composites, irrespective of their constituents being homogeneous or heterogeneous. The calculations are direct, accurate and efficient, yielding the band structure, group-velocity, energy-flux and phase-velocity vectors as functions of the frequency and wavevector components, over an entire frequency band.
引用
收藏
页数:17
相关论文
共 43 条
[1]   The usage of standard finite element codes for computation of dispersion relations in materials with periodic microstructure [J].
Aberg, M ;
Gudmundson, P .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1997, 102 (04) :2007-2013
[2]   HARMONIC-WAVES IN COMPOSITE-MATERIALS [J].
ABOUDI, J .
WAVE MOTION, 1986, 8 (04) :289-303
[3]  
[Anonymous], 2012, MECH COMPOSITE MAT
[4]   NUMERICAL TREATMENT OF EIGENVALUE PROBLEMS FOR DIFFERENTIAL-EQUATIONS WITH DISCONTINUOUS COEFFICIENTS [J].
BABUSKA, I ;
OSBORN, JE .
MATHEMATICS OF COMPUTATION, 1978, 32 (144) :991-1023
[5]  
Bahar L. Y., 1972, J ENG MECH DIV, V98, P1159
[6]  
Banerjee B., 2011, An introduction to metamaterials and waves in composites, DOI [10.1201/b11814, DOI 10.1201/B11814]
[7]   FLOQUET WAVES IN ANISOTROPIC PERIODICALLY LAYERED COMPOSITES [J].
BRAGA, AMB ;
HERRMANN, G .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1992, 91 (03) :1211-1227
[8]   WAVE GUIDES FOR SLOW WAVES [J].
BRILLOUIN, L .
JOURNAL OF APPLIED PHYSICS, 1948, 19 (11) :1023-1041
[9]   SIMPLE EXCITATIONS IN N-LAYERED SUPERLATTICES [J].
DJAFARIROUHANI, B ;
DOBRZYNSKI, L .
SOLID STATE COMMUNICATIONS, 1987, 62 (09) :609-615
[10]   In-plane elastic wave propagation and band-gaps in layered functionally graded phononic crystals [J].
Fomenko, S. I. ;
Golub, M. V. ;
Zhang, Ch. ;
Bui, T. Q. ;
Wang, Y. -S. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2014, 51 (13) :2491-2503