Stability of Glyme Solvate Ionic Liquid as an Electrolyte for Rechargeable Li-O2 Batteries

被引:56
作者
Kwon, Hoi-Min [1 ]
Thomas, Morgan L. [1 ]
Tatara, Ryoichi [1 ]
Oda, Yoshiki [1 ]
Kobayashi, Yuki [1 ]
Nakanishi, Azusa [1 ]
Ueno, Kazuhide [1 ]
Dokko, Kaoru [1 ]
Watanabee, Masayoshi [1 ]
机构
[1] Yokohama Natl Univ, Dept Chem & Biotechnol, Hodogaya Ku, 79-5 Tokiwadai, Yokohama, Kanagawa 2408501, Japan
基金
日本学术振兴会;
关键词
lithium-oxygen battery; solvate ionic liquid; glyme; electrochemical mass spectrometry; rotating ring disk electrode voltammetry; OXYGEN REDUCTION; SOLVENT STABILITY; ORGANIC-SOLVENTS; CARBON ELECTRODE; LITHIUM; ELECTROCHEMISTRY; GROWTH; EVOLUTION; CATHODES; LIMITATIONS;
D O I
10.1021/acsami.6b14449
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A solvate ionic liquid (SIL) was compared with a conventional organic solvent for the electrolyte of the Li-O-2 battery. An equimolar mixture of triglyme (G3) and lithium bis(trifluoromethanesulfonyl)amide (Li[TFSA]), and a G3/Li[TFSA] mixture containing excess glyme were chosen as the SIL and the conventional electrolyte, respectively. Charge behavior and accompanying gas evolution of the two electrolytes was investigated by electrochemical mass spectrometry (ECMS). From the linear sweep voltammetry performed on an as-prepared cell, we demonstrate that the SIL has a higher oxidative stability than the conventional electrolyte and, furthermore, offers the advantage of lower volatility, which would benefit an open-type lithium-O-2 cell design. Moreover, CO2 evolution during galvanostatic charge was less in the SIL, which implies less side reaction. However, O-2 evolution during charge did not reach the theoretical value in either of the two electrolytes. Several mass spectral fragments were generated during the charge process, which provided evidence for side reactions of glyme-based electrolytes. We further relate the difference in observed discharge product morphology for these electrolytes to the solubility of the superoxide intermediate, determined by rotating ring disk electrode (RRDE) measurements.
引用
收藏
页码:6014 / 6021
页数:8
相关论文
共 52 条
[1]   The Importance of Nanometric Passivating Films on Cathodes for Li-Air Batteries [J].
Adams, Brian D. ;
Black, Robert ;
Radtke, Claudio ;
Williams, Zack ;
Mehdi, B. Layla ;
Browning, Nigel D. ;
Nazar, Linda F. .
ACS NANO, 2014, 8 (12) :12483-12493
[2]   Towards a Stable Organic Electrolyte for the Lithium Oxygen Battery [J].
Adams, Brian D. ;
Black, Robert ;
Williams, Zack ;
Fernandes, Russel ;
Cuisinier, Marine ;
Berg, Erik Jaemstorp ;
Novak, Petr ;
Murphy, Graham K. ;
Nazar, Linda F. .
ADVANCED ENERGY MATERIALS, 2015, 5 (01)
[3]   Current density dependence of peroxide formation in the Li-O2 battery and its effect on charge [J].
Adams, Brian D. ;
Radtke, Claudio ;
Black, Robert ;
Trudeau, Michel L. ;
Zaghib, Karim ;
Nazar, Linda F. .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (06) :1772-1778
[4]  
Aetukuri NB, 2015, NAT CHEM, V7, P50, DOI [10.1038/NCHEM.2132, 10.1038/nchem.2132]
[5]   THE ELECTROCHEMISTRY OF NOBLE-METAL ELECTRODES IN APROTIC ORGANIC-SOLVENTS CONTAINING LITHIUM-SALTS [J].
AURBACH, D ;
DAROUX, M ;
FAGUY, P ;
YEAGER, E .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1991, 297 (01) :225-244
[6]  
Aurbach D, 2016, NAT ENERGY, V1, DOI [10.1038/NENERGY.2016.128, 10.1038/nenergy.2016.128]
[7]   A critical review on lithium-air battery electrolytes [J].
Balaish, Moran ;
Kraytsberg, Alexander ;
Ein-Eli, Yair .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (07) :2801-2822
[8]   Sulfone-Based Electrolytes for Nonaqueous Li-O2 Batteries [J].
Barde, Fanny ;
Chen, Yuhui ;
Johnson, Lee ;
Schaltin, Stijn ;
Fransaer, Jan ;
Bruce, Peter G. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (33) :18892-18898
[9]   TEMPO: A Mobile Catalyst for Rechargeable Li-O2 Batteries [J].
Bergner, Benjamin J. ;
Schuermann, Adrian ;
Peppler, Klaus ;
Garsuch, Arnd ;
Janek, Juergen .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (42) :15054-15064
[10]   Thermal and electrochemical decomposition of lithium peroxide in non-catalyzed carbon cathodes for Li-air batteries [J].
Beyer, H. ;
Meini, S. ;
Tsiouvaras, N. ;
Piana, M. ;
Gasteiger, H. A. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (26) :11025-11037