Using GHZ-State for Multiparty Quantum Secret Sharing Without Code Table

被引:10
作者
Chou, Yao-Hsin [1 ]
Chen, Shuo-Mao [1 ]
Lin, Yu-Ting [1 ]
Chen, Chi-Yuan [2 ]
Chao, Han-Chieh [2 ,3 ,4 ]
机构
[1] Natl Chi Nan Univ, Dept Comp Sci & Informat Engn, Taipei, Taiwan
[2] Natl Dong Hwa Univ, Dept Elect Engn, Taipei, Taiwan
[3] Natl Ilan Univ, Dept Elect Engn, Taipei, Taiwan
[4] Natl Ilan Univ, Inst Comp Sci & Informat Engn, Taipei, Taiwan
关键词
quantum communication; quantum cryptography; quantum secret sharing; quantum entanglement; multiparty secret sharing; SECURE DIRECT COMMUNICATION; CRYPTOGRAPHY; ENTANGLEMENT;
D O I
10.1093/comjnl/bxs005
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We proposed two multiparty quantum secret sharing schemes based on n-particle Greenberger-Horne-Zeilinger-states (GHZ states), which are transformed from Einstein-Podolsky-Rosen pairs by entanglement swapping. In our schemes, the dealer imposes messages by performing local unitary operations (I, sigma x, i sigma y, sigma z) on the n-particle GHZ state she holds, and the agents collaborate to deduce the dealer's messages by performing local unitary operations on their own qubit. The amount of dealer's secret message is positively related with the number of agents. The need of qubits is one-third less than the former schemes and, also, they can be reused for the next new round. The scheme (II) does not have to pre-share the code table, which increases the security without the risk of being stolen.
引用
收藏
页码:1167 / 1175
页数:9
相关论文
共 41 条
[1]  
[Anonymous], 1984, P IEEE INT C COMP, DOI DOI 10.1016/J.TCS.2014.05.025
[2]  
Bandyopadhyay S, 2000, PHYS REV A, V62, DOI 10.1103/PhysRevA.62.012308
[3]   Secure communication with a publicly known key [J].
Beige, A ;
Englert, BG ;
Kurtsiefer, C ;
Weinfurter, H .
ACTA PHYSICA POLONICA A, 2002, 101 (03) :357-368
[4]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[5]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[6]   QUANTUM CRYPTOGRAPHY WITHOUT BELL THEOREM [J].
BENNETT, CH ;
BRASSARD, G ;
MERMIN, ND .
PHYSICAL REVIEW LETTERS, 1992, 68 (05) :557-559
[7]   Multiparticle generalization of entanglement swapping [J].
Bose, S ;
Vedral, V ;
Knight, PL .
PHYSICAL REVIEW A, 1998, 57 (02) :822-829
[8]   Deterministic secure direct communication using entanglement -: art. no. 187902 [J].
Boström, K ;
Felbinger, T .
PHYSICAL REVIEW LETTERS, 2002, 89 (18) :187902/1-187902/4
[9]   Quantum key distribution without alternative measurements [J].
Cabello, A .
PHYSICAL REVIEW A, 2000, 61 (05)
[10]   Quantum entanglement and non-locality based secure computation for future communication [J].
Chou, Y. -H. ;
Chen, C. -Y. ;
Chao, H. -C. ;
Park, J. H. ;
Fan, R. -K. .
IET INFORMATION SECURITY, 2011, 5 (01) :69-79