Example-based super-resolution

被引:1802
作者
Freeman, WT [1 ]
Jones, TR [1 ]
Pasztor, EC [1 ]
机构
[1] Mitsubishi Elect Res Labs, Cambridge, MA USA
关键词
D O I
10.1109/38.988747
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
To address the lack of resolution independence in most models, we developed a fast and simple one-pass, training-based super-resolution algorithm for creating plausible high-frequency details in zoomed images.
引用
收藏
页码:56 / 65
页数:10
相关论文
共 21 条
  • [1] [Anonymous], P 34 ANN C INF SCI S
  • [2] [Anonymous], FUNDAMENTALS ELECT I
  • [3] Baker S, 2000, PROC CVPR IEEE, P372, DOI 10.1109/CVPR.2000.854852
  • [4] Efros AA, 2001, COMP GRAPH, P341, DOI 10.1145/383259.383296
  • [5] Fekri F, 1998, INT CONF ACOUST SPEE, P2657, DOI 10.1109/ICASSP.1998.678069
  • [6] WHAT IS THE GOAL OF SENSORY CODING
    FIELD, DJ
    [J]. NEURAL COMPUTATION, 1994, 6 (04) : 559 - 601
  • [7] Learning low-level vision
    Freeman, WT
    Pasztor, EC
    Carmichael, OT
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2000, 40 (01) : 25 - 47
  • [8] Freeman WT, 1999, ADV NEUR IN, V11, P775
  • [9] STOCHASTIC RELAXATION, GIBBS DISTRIBUTIONS, AND THE BAYESIAN RESTORATION OF IMAGES
    GEMAN, S
    GEMAN, D
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1984, 6 (06) : 721 - 741
  • [10] Image analogies
    Hertzmann, A
    Jacobs, CE
    Oliver, N
    Curless, B
    Salesin, DH
    [J]. SIGGRAPH 2001 CONFERENCE PROCEEDINGS, 2001, : 327 - 340