Error estimates of spectral Legendre-Galerkin methods for the fourth-order equation in one dimension

被引:30
作者
Chen, Yanping [1 ]
Zhou, Jianwei [2 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[2] Linyi Univ, Dept Math, Linyi 276005, Peoples R China
关键词
A posteriori error indicator; A priori error estimate; Spearal Galerkin method; Legendre polynomial; APPROXIMATION;
D O I
10.1016/j.amc.2015.06.082
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We employ spectral Legendre-Galerkin and mixed Legendre-Galerkin approximations to solve the first bi-harmonic equation in one dimension, respectively. By orthogonal properties of Legendre polynomials, we obtain an explicit a posteriori error indicator for spectral Legendre-Galerkin methods. Furthermore, in virtue of an auxiliary variable, we present spectral mixed Legendre-Galerkin methods and study the a priori estimate and a posteriori error indicator. Especially, these indicators only depend on the expansions of the right-hand item. Numerical examples are presented to verify Off theoretical analysis. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1217 / 1226
页数:10
相关论文
共 30 条
[1]  
[Anonymous], 2003, SOBOLEV SPACES
[2]  
[Anonymous], SPRINGER SERIES COMP
[3]  
[Anonymous], TOPICS NUMERICAL ANA
[4]  
awrence L., 1998, GRADUATE STUDIES MAT, V19
[5]   ANALYSIS OF MIXED METHODS USING MESH DEPENDENT NORMS [J].
BABUSKA, I ;
OSBORN, J ;
PITARANTA, J .
MATHEMATICS OF COMPUTATION, 1980, 35 (152) :1039-1062
[6]   THE OPTIMAL CONVERGENCE RATE OF THE P-VERSION OF THE FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
SURI, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (04) :750-776
[7]  
Babuska I., 2001, NUMER MATH SCI COMP
[8]   SOME SPECTRAL APPROXIMATIONS OF 2-DIMENSIONAL 4TH-ORDER PROBLEMS [J].
BERNARDI, C ;
COPPOLETTA, G ;
MADAY, Y .
MATHEMATICS OF COMPUTATION, 1992, 59 (199) :63-76
[9]  
Bernardi C., 1997, Handb. Numer. Anal., V5, P209, DOI 10.1016/S1570-8659(97)80003-8
[10]  
Bernardi C., 1991, PROGR APPROXIMATION, P43