Video pose estimation with global motion cues

被引:7
|
作者
Shi, Qingxuan [1 ,2 ]
Di, Huijun [1 ]
Lu, Yao [1 ]
Lv, Feng [1 ]
Tian, Xuedong [2 ]
机构
[1] Beijing Inst Technol, Sch Comp Sci, Beijing Lab Intelligent Informat Technol, Beijing, Peoples R China
[2] Hebei Univ, Sch Comp Sci & Technol, Baoding, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
Pose estimation; Pose detection; Global motion estimation; PICTORIAL STRUCTURES;
D O I
10.1016/j.neucom.2016.09.033
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper addresses the problem of pose estimation in video sequences in which human pose changes drastically over time. Popular strategies for video pose estimation first yield multiple pose candidates for each frame and then achieve consistent pose estimation by enforcing temporal constraints across frames. To enrich pose candidates, previous methods typically employ local motion cues to propagate pose detections to adjacent frames. Reasonable pose proposals can be achieved only when the local motion estimation is accurate and good detections exist among adjacent frames, both of which are hard to be satisfied under drastic human pose changes. In this paper, we propose to propagate pose detections to entire video sequence through global motion cues which provide a long term holistic non-rigid motion transformation for the given video. We exploit the temporal continuity of both single parts and part pairs in the inference over a spa-do-temporal model to stitch the reasonable trajectory fragments for each part and obtain the final pose estimation. Experimental results demonstrate remarkable performance improvement in comparison with the state-of-the-art methods.
引用
收藏
页码:269 / 279
页数:11
相关论文
共 50 条
  • [41] Human Pose Estimation from Video and IMUs
    von Marcard, Timo
    Pons-Moll, Gerard
    Rosenhahn, Bodo
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (08) : 1533 - 1547
  • [42] Head Pose Estimation for Sign Language Video
    Luzardo, Marcos
    Karppa, Matti
    Laaksonen, Jorma
    Jantunen, Tommi
    IMAGE ANALYSIS, SCIA 2013: 18TH SCANDINAVIAN CONFERENCE, 2013, 7944 : 349 - 360
  • [43] Detecting shoplifting in video: A Pose-Motion model
    Chen, Ruoyu
    Yin, Jianpin
    Zhu, En
    Li, Yuanwei
    Li, Yong
    Journal of Computational Information Systems, 2014, 10 (03): : 1297 - 1304
  • [44] Human pose estimation using motion exemplars
    Fathi, Alireza
    Mori, Greg
    2007 IEEE 11TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1-6, 2007, : 1917 - 1924
  • [45] Guest Editorial: State of the Art in Image- and Video-Based Human Pose and Motion Estimation
    Leonid Sigal
    Michael J. Black
    International Journal of Computer Vision, 2010, 87 : 1 - 3
  • [46] Guest Editorial: State of the Art in Image- and Video-Based Human Pose and Motion Estimation
    Sigal, Leonid
    Black, Michael J.
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 87 (1-2) : 1 - 3
  • [47] Video motion capture by silhouette analysis and pose optimization
    Chen, Cheng
    Zhuang, Yueting
    Zhao, Shicong
    Cheng, Yin
    2007 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-5, 2007, : 3 - 3
  • [48] Motion Estimation for Functional Medical Imaging Studies Using a Stereo Video Head Pose Tracking System
    Ma, William Pak Tun
    Hamarneh, Ghassan
    Mori, Greg
    Dinelle, Katie
    Sossi, Vesna
    2008 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (2008 NSS/MIC), VOLS 1-9, 2009, : 3361 - +
  • [49] Temporal video segmentation using global motion estimation and discrete curve evolution
    Treetasanatavorn, S
    Heuer, J
    Rauschenbach, U
    Illgner, K
    Kaup, A
    ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 385 - 388
  • [50] A robust approach to global motion estimation for content-based video analysis
    Höynck, M
    Unger, M
    Wellhausen, J
    Ohm, JR
    INTERNET MULTIMEDIA MANAGEMENT SYSTEMS V, 2004, 5601 : 36 - 45