Video pose estimation with global motion cues

被引:7
|
作者
Shi, Qingxuan [1 ,2 ]
Di, Huijun [1 ]
Lu, Yao [1 ]
Lv, Feng [1 ]
Tian, Xuedong [2 ]
机构
[1] Beijing Inst Technol, Sch Comp Sci, Beijing Lab Intelligent Informat Technol, Beijing, Peoples R China
[2] Hebei Univ, Sch Comp Sci & Technol, Baoding, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
Pose estimation; Pose detection; Global motion estimation; PICTORIAL STRUCTURES;
D O I
10.1016/j.neucom.2016.09.033
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper addresses the problem of pose estimation in video sequences in which human pose changes drastically over time. Popular strategies for video pose estimation first yield multiple pose candidates for each frame and then achieve consistent pose estimation by enforcing temporal constraints across frames. To enrich pose candidates, previous methods typically employ local motion cues to propagate pose detections to adjacent frames. Reasonable pose proposals can be achieved only when the local motion estimation is accurate and good detections exist among adjacent frames, both of which are hard to be satisfied under drastic human pose changes. In this paper, we propose to propagate pose detections to entire video sequence through global motion cues which provide a long term holistic non-rigid motion transformation for the given video. We exploit the temporal continuity of both single parts and part pairs in the inference over a spa-do-temporal model to stitch the reasonable trajectory fragments for each part and obtain the final pose estimation. Experimental results demonstrate remarkable performance improvement in comparison with the state-of-the-art methods.
引用
收藏
页码:269 / 279
页数:11
相关论文
共 50 条
  • [31] Global motion estimation-based method for nighttime video enhancement
    Rao, Yunbo
    Lin, Weiyao
    Chen, Leiting
    OPTICAL ENGINEERING, 2011, 50 (05)
  • [32] Fast gradient methods based on global motion estimation for video compression
    Keller, Y
    Averbuch, A
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2003, 13 (04) : 300 - 309
  • [33] Automatic feature-based global motion estimation in video sequences
    Huang, JC
    Hsieh, WS
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2004, 50 (03) : 911 - 915
  • [34] Global motion cues and the chromatic system
    Bilodeau, L
    Faubert, J
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1999, 16 (01): : 1 - 5
  • [35] Combining local and global cues to motion
    Morgan, Michael
    ATTENTION PERCEPTION & PSYCHOPHYSICS, 2017, 79 (07) : 1886 - 1891
  • [36] A dynamics estimation filter for pose and motion estimation in orbit
    McTavish, D. J.
    Okouneva, G.
    Enright, J.
    Schumacher, R.
    IMVIP 2007: INTERNATIONAL MACHINE VISION AND IMAGE PROCESSING CONFERENCE, PROCEEDINGS, 2007, : 203 - 203
  • [37] Combining local and global cues to motion
    Michael Morgan
    Attention, Perception, & Psychophysics, 2017, 79 : 1886 - 1891
  • [38] Global motion cues and the chromatic system
    Bilodeau, Lynda
    Faubert, Jocelyn
    Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1999, 16 (01): : 1 - 5
  • [39] Linear Relaxation for Global Pose Estimation
    Ma, Wenjuan
    Shen, Shuhan
    Liu, Yuncai
    2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 6291 - 6294
  • [40] LEDs based video camera pose estimation
    Sudars, K.
    Cacurs, R.
    Homjakovs, I.
    Judvaitis, J.
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2015, 63 (04) : 897 - 905