Video pose estimation with global motion cues

被引:7
|
作者
Shi, Qingxuan [1 ,2 ]
Di, Huijun [1 ]
Lu, Yao [1 ]
Lv, Feng [1 ]
Tian, Xuedong [2 ]
机构
[1] Beijing Inst Technol, Sch Comp Sci, Beijing Lab Intelligent Informat Technol, Beijing, Peoples R China
[2] Hebei Univ, Sch Comp Sci & Technol, Baoding, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
Pose estimation; Pose detection; Global motion estimation; PICTORIAL STRUCTURES;
D O I
10.1016/j.neucom.2016.09.033
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper addresses the problem of pose estimation in video sequences in which human pose changes drastically over time. Popular strategies for video pose estimation first yield multiple pose candidates for each frame and then achieve consistent pose estimation by enforcing temporal constraints across frames. To enrich pose candidates, previous methods typically employ local motion cues to propagate pose detections to adjacent frames. Reasonable pose proposals can be achieved only when the local motion estimation is accurate and good detections exist among adjacent frames, both of which are hard to be satisfied under drastic human pose changes. In this paper, we propose to propagate pose detections to entire video sequence through global motion cues which provide a long term holistic non-rigid motion transformation for the given video. We exploit the temporal continuity of both single parts and part pairs in the inference over a spa-do-temporal model to stitch the reasonable trajectory fragments for each part and obtain the final pose estimation. Experimental results demonstrate remarkable performance improvement in comparison with the state-of-the-art methods.
引用
收藏
页码:269 / 279
页数:11
相关论文
共 50 条
  • [21] Player Pose Analysis in Tennis Video based on Pose Estimation
    Kurose, Ryunosuke
    Hayashi, Masaki
    Ishii, Takeo
    Aoki, Yoshimitsu
    2018 INTERNATIONAL WORKSHOP ON ADVANCED IMAGE TECHNOLOGY (IWAIT), 2018,
  • [22] LOCAL TO GLOBAL TRANSFORMER FOR VIDEO BASED 3D HUMAN POSE ESTIMATION
    Ma, Haifeng
    Ke Lu
    Xue, Jian
    Niu, Zehai
    Gao, Pengcheng
    2022 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO WORKSHOPS (IEEE ICMEW 2022), 2022,
  • [23] Robust global motion estimation in video stabilization for reducing visually induced motion sickness
    Tsubaki, I
    Morita, T
    Aizawa, K
    Saito, T
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING 2006, PTS 1 AND 2, 2006, 6077
  • [24] Global motion estimation from semi-dynamic video using motion sensors
    Aygun, RS
    Zhang, AD
    2002 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL II, PROCEEDINGS, 2002, : 273 - 276
  • [25] Pose Estimation of Complex Human Motion
    Lei, Fei
    An, Zhanghong
    Wang, Xueli
    ICVIP 2019: PROCEEDINGS OF 2019 3RD INTERNATIONAL CONFERENCE ON VIDEO AND IMAGE PROCESSING, 2019, : 153 - 156
  • [26] Hierarchical global motion estimation/compensation in low bitrate video coding
    Chu, CT
    Anastassiou, D
    Chang, SF
    ISCAS '97 - PROCEEDINGS OF 1997 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS I - IV: CIRCUITS AND SYSTEMS IN THE INFORMATION AGE, 1997, : 1149 - 1152
  • [27] Fast gradient methods based global motion estimation for video compression
    Keller, Y
    Averbuch, A
    Miller, O
    2002 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL I, PROCEEDINGS, 2002, : 665 - 668
  • [28] Feature Point Classification Based Global Motion Estimation for Video Stabilization
    Kim, Seung-Kyun
    Kang, Seok-Jae
    Wang, Tae-Shick
    Ko, Sung-Jea
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2013, 59 (01) : 267 - 272
  • [29] Robust and fast global motion estimation oriented to video object segmentation
    Qi, B
    Amer, A
    2005 International Conference on Image Processing (ICIP), Vols 1-5, 2005, : 777 - 780
  • [30] Progressive model refinement global motion estimation algorithm for video coding
    Wang, Haifeng
    Wang, Jia
    Liu, Qingshan
    Lu, Hanqing
    2006 8TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, VOLS 1-4, 2006, : 1444 - +