Stochastic Model of Energy-Transfer Processes Among Rare-Earth Ions. Example of Al2O3:Tm3+

被引:51
作者
Loiko, Pavel [1 ]
Pollnau, Markus [1 ]
机构
[1] KTH Royal Inst Technol, Dept Mat & Nano Phys, Sch Informat & Commun Technol, Electrum 229,Isafjordsgatan 22-24, S-16440 Kista, Sweden
基金
瑞典研究理事会; 欧洲研究理事会;
关键词
WAVE-GUIDE LASER; TRANSFER-UP-CONVERSION; CROSS-RELAXATION; HIGHLY EFFICIENT; SINGLE-CRYSTALS; SHELL-MODEL; PUMPED TM; SPECTROSCOPY; LUMINESCENCE; LANTHANIDE;
D O I
10.1021/acs.jpcc.6b09594
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Energy-transfer processes strongly affect the performance of lanthanide-doped photonic devices. In this work, we introduce a simple stochastic model of energy-transfer processes and successfully apply it to the example of cross-relaxation (CR) and energy-transfer upconversion (ETU) in amorphous Al2O3:Tm3+ waveguides on silicon intended for lasers operating at similar to 2 mu m. The stochastic model is based on the rate-equation formalism and considers two spectroscopically distinct ion classes, namely single ions and ions with neighbors (pairs and clusters), with the corresponding ion fractions being dependent on the doping concentration. We prove that a more accurate description of the luminescence properties of amorphous Al2O3:Tm3+ is obtained when accounting for the presence of these distinct ion classes. Based on the developed model, we derive microscopic CR and ETU parameters of C-CR = 5.83 X 10(-38) cm(6) s(-1), C-ETU1 = 0.93 x 10(-40) cm(6) s(-1), and C-Eru2 = 7.81 x 10(-40) cm(6) s(-1), and determine the laser quantum efficiency eta(q) of excitation of Tm3+ ions in the upper laser level. For the maximum Tm3+ concentration of 5.0 X 10(20) cm(-3) studied experimentally in this investigation, eta(q) reaches 1.73. Furthermore, the transition cross sections at the pump and laser wavelengths are determined. For the H-3(6) -> F-3(4) transition, the maximum stimulated-emission cross section is sigma(e) = 0.47 X 10(-20) cm(2) at 1808 nm.
引用
收藏
页码:26480 / 26489
页数:10
相关论文
共 60 条
[1]   Energy-Transfer-Upconversion Models, Their Applicability and Breakdown in the Presence of Spectroscopically Distinct Ion Classes: A Case Study in Amorphous Al2O3:Er3+ [J].
Agazzi, L. ;
Worhoff, K. ;
Pollnau, M. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (13) :6759-6776
[2]   Spectroscopy of upper energy levels in an Er3+-doped amorphous oxide [J].
Agazzi, Laura ;
Worhoff, Kerstin ;
Kahn, Andreas ;
Fechner, Matthias ;
Huber, Guenter ;
Pollnau, Markus .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2013, 30 (03) :663-677
[3]   Impact of luminescence quenching on relaxation-oscillation frequency in solid-state lasers [J].
Agazzi, Laura ;
Bernhardi, Edward H. ;
Worhoff, Kerstin ;
Pollnau, Markus .
APPLIED PHYSICS LETTERS, 2012, 100 (01)
[4]   VIBRONIC INTERACTIONS IN ND-YAG RESULTING IN NONRECIPROCITY OF ABSORPTION AND STIMULATED-EMISSION CROSS-SECTIONS [J].
AULL, BF ;
JENSSEN, HP .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1982, 18 (05) :925-930
[5]   Upconversion and anti-stokes processes with f and d ions in solids [J].
Auzel, F .
CHEMICAL REVIEWS, 2004, 104 (01) :139-173
[6]   UPCONVERSION PROCESSES IN COUPLED ION SYSTEMS [J].
AUZEL, F .
JOURNAL OF LUMINESCENCE, 1990, 45 (1-6) :341-345
[7]  
AUZEL F, 1994, OPT MATER, V4, P35, DOI 10.1016/0925-3467(94)90053-1
[8]   Highly efficient, low-threshold monolithic distributed-Bragg-reflector channel waveguide laser in Al2O3:Yb3+ [J].
Bernhardi, E. H. ;
van Wolferen, H. A. G. M. ;
Worhoff, K. ;
de Ridder, R. M. ;
Pollnau, M. .
OPTICS LETTERS, 2011, 36 (05) :603-605
[9]   Ultra-narrow-linewidth, single-frequency distributed feedback waveguide laser in Al2O3:Er3+ on silicon [J].
Bernhardi, E. H. ;
van Wolferen, H. A. G. M. ;
Agazzi, L. ;
Khan, M. R. H. ;
Roeloffzen, C. G. H. ;
Worhoff, K. ;
Pollnau, M. ;
de Ridder, R. M. .
OPTICS LETTERS, 2010, 35 (14) :2394-2396
[10]   Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon [J].
Bradley, J. D. B. ;
Agazzi, L. ;
Geskus, D. ;
Ay, F. ;
Worhoff, K. ;
Pollnau, M. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2010, 27 (02) :187-196