Adaptive wavelet estimation of the diffusion coefficient under additive error measurements

被引:16
作者
Hoffmann, M. [1 ,2 ]
Munk, A. [3 ]
Schmidt-Hieber, J. [3 ]
机构
[1] ENSAE, F-92245 Malakoff, France
[2] CNRS UMR 8050, F-92245 Malakoff, France
[3] Univ Gottingen, Inst Math Stochast, D-37077 Gottingen, Germany
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2012年 / 48卷 / 04期
关键词
Adaptive estimation; Besov spaces; Diffusion processes; Nonparametric regression; Wavelet estimation; MARKET MICROSTRUCTURE NOISE; NONPARAMETRIC-ESTIMATION; MINIMAX ESTIMATION; VOLATILITY; PARAMETER; SHRINKAGE; VARIANCE; MODEL;
D O I
10.1214/11-AIHP472
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study nonparametric estimation of the diffusion coefficient from discrete data, when the observations are blurred by additional noise. Such issues have been developed over the last 10 years in several application fields and in particular in high frequency financial data modelling, however mainly from a parametric and semiparametric point of view. This paper addresses the nonparametric estimation of the path of the (possibly stochastic) diffusion coefficient in a relatively general setting. By developing pre-averaging techniques combined with wavelet thresholding, we construct adaptive estimators that achieve a nearly optimal rate within a large scale of smoothness constraints of Besov type. Since the diffusion coefficient is usually genuinely random, we propose a new criterion to assess the quality of estimation; we retrieve the usual minimax theory when this approach is restricted to a deterministic diffusion coefficient. In particular, we take advantage of recent results of Rei beta (Ann. Statist. 39 (2011) 772-802) of asymptotic equivalence between a Gaussian diffusion with additive noise and Gaussian white noise model, in order to prove a sharp lower bound.
引用
收藏
页码:1186 / 1216
页数:31
相关论文
共 39 条
[1]   How often to sample a continuous-time process in the presence of market microstructure noise [J].
Aït-Sahalia, Y ;
Mykland, PA ;
Zhang, L .
REVIEW OF FINANCIAL STUDIES, 2005, 18 (02) :351-416
[2]   Ultra high frequency volatility estimation with dependent microstructure noise [J].
Ait-Sahalia, Yacine ;
Mykland, Per A. ;
Zhang, Lan .
JOURNAL OF ECONOMETRICS, 2011, 160 (01) :160-175
[3]   Market microstructure noise, integrated variance estimators, and the accuracy of asymptotic approximations [J].
Bandi, Federico M. ;
Russell, Jeffrey R. .
JOURNAL OF ECONOMETRICS, 2011, 160 (01) :145-159
[4]   Separating microstructure noise from volatility [J].
Bandi, FM ;
Russell, JR .
JOURNAL OF FINANCIAL ECONOMICS, 2006, 79 (03) :655-692
[5]   Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise [J].
Barndorff-Nielsen, Ole E. ;
Hansen, Peter Reinhard ;
Lunde, Asger ;
Shephard, Neil .
ECONOMETRICA, 2008, 76 (06) :1481-1536
[6]   EXPONENTIAL INEQUALITIES FOR SELF-NORMALIZED MARTINGALES WITH APPLICATIONS [J].
Bercu, Bernard ;
Touati, Abderrahmen .
ANNALS OF APPLIED PROBABILITY, 2008, 18 (05) :1848-1869
[7]  
Cai TT, 2010, STAT SINICA, V20, P1011
[8]   FUNCTIONAL SPACES ASSOCIATED WITH GAUSSIAN-PROCESSES [J].
CIESIELSKI, Z ;
KERKYACHARIAN, G ;
ROYNETTE, B .
STUDIA MATHEMATICA, 1993, 107 (02) :171-204
[9]  
Cohen A., 1993, Applied and Computational Harmonic Analysis, V1, P54, DOI 10.1006/acha.1993.1005
[10]  
Cohen Albert, 2003, Numerical Analysis of wavelet Methods. J. Studies in Mathematics and Its Applications, V32