Electric Field Modulation of the Membrane Potential in Solid-State Ion Channels

被引:45
作者
Guan, Weihua [1 ]
Reed, Mark A. [1 ,2 ]
机构
[1] Yale Univ, Dept Elect Engn, New Haven, CT 06520 USA
[2] Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA
关键词
Nanochannel; membrane potential; electrofluidic gating; ion transport; salinity gradient power; CONCENTRATION-GRADIENT; TRANSPORT;
D O I
10.1021/nl303820a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Biological ion channels are molecular devices that allow a rapid flow of ions across the cell membrane. Normal physiological functions, such as generating action potentials for cell-to-cell communication, are highly dependent on ion channels that can open and close in response to external stimuli for regulating ion permeation. Mimicking these biological functions using synthetic structures is a rapidly progressing yet challenging area. Here we report the electric field modulation of the membrane potential phenomena in mechanically and chemically robust solid-state ion channels, an abiotic analogue to the voltage-gated ion channels in living systems. To understand the complex physicochemical processes in the electric field regulated membrane potential behavior, both quasi-static and transient characteristics of converting transmembrane ion gradients into electric potential are investigated. It is found that the transmembrane potential can be adequately tuned by an external electrical stimulation, thanks to the unique properties of the voltage-regulated selective ion transport through a nanoscale channel.
引用
收藏
页码:6441 / 6447
页数:7
相关论文
共 31 条
[21]   Impact of leakage current and electrolysis on FET flow control and pH changes in nanofluidic channels [J].
Oh, Youn-Jin ;
Bottenus, Danny ;
Ivory, Cornelius F. ;
Han, Sang M. .
LAB ON A CHIP, 2009, 9 (11) :1609-1617
[22]   Transport phenomena in nanofluidics [J].
Schoch, Reto B. ;
Han, Jongyoon ;
Renaud, Philippe .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :839-883
[23]   Engineered voltage-responsive nanopores [J].
Siwy, Zuzanna S. ;
Howorka, Stefan .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (03) :1115-1132
[24]   Nanochannel fabrication for chemical sensors [J].
Stern, MB ;
Geis, MW ;
Curtin, JE .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1997, 15 (06) :2887-2891
[25]   Field-effect based attomole titrations in nanoconfinement [J].
Veenhuis, Rogier B. H. ;
van der Wouden, Egbert J. ;
van Nieuwkasteele, Jan W. ;
van den Berg, Albert ;
Eijkel, Jan C. T. .
LAB ON A CHIP, 2009, 9 (24) :3472-3480
[26]   Ionic selectivity of single nanochannels [J].
Vlassiouk, Ivan ;
Smirnov, Sergei ;
Siwy, Zuzanna .
NANO LETTERS, 2008, 8 (07) :1978-1985
[27]   ELECTROLYTE TRANSPORT THROUGH NANOFILTRATION MEMBRANES BY THE SPACE-CHARGE MODEL AND THE COMPARISON WITH TEORELL-MEYER-SIEVERS MODEL [J].
WANG, XL ;
TSURU, T ;
NAKAO, S ;
KIMURA, S .
JOURNAL OF MEMBRANE SCIENCE, 1995, 103 (1-2) :117-133
[28]  
Wei RS, 2012, NAT NANOTECHNOL, V7, P257, DOI [10.1038/NNANO.2012.24, 10.1038/nnano.2012.24]
[29]   THE EXCLUSION DIFFUSION POTENTIAL IN CHARGED POROUS MEMBRANES [J].
WESTERMANNCLARK, GB ;
CHRISTOFOROU, CC .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1986, 198 (02) :213-231
[30]   Synthetic Protocells to Mimic and Test Cell Function [J].
Xu, Jian ;
Sigworth, Fred J. ;
LaVan, David A. .
ADVANCED MATERIALS, 2010, 22 (01) :120-127