Optical Asymmetric Cryptosystem centered on Fractional Fourier Domain using Hilbert Phase Mask

被引:0
作者
Yadav, Poonam Lata [1 ]
Singh, Hukum [2 ]
机构
[1] Singhania Univ, Dept Appl Sci, Pacheri Beri, Raj, India
[2] NorthCap Univ, Dept Appl Sci, Gurgaon, India
来源
2017 INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION TECHNOLOGIES FOR SMART NATION (IC3TSN) | 2017年
关键词
Encryption; Random Hilbert Mask; Fractional Fourier transforms; IMAGE ENCRYPTION; GYRATOR TRANSFORM;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In order to enhance the con entiality we propose a new technique in visual image encryption system In this technique asymmetric cryptosystem is carried out in the Fractional Fourier Transform (FrFT). The phase masks used here are different from the random phase masks (RPM) used in conventional Double Random Phase Encoding (DRPE) system. Here, we make use of Radial Hilbert Mask (RHM) along with RPM. Also, different keys are used for encryption and decryption purpose to make the system much more secure. Mean Square Errors (M,SE) and Peak Signal to Noise Ratio (PSNR) are calculated for the proposed algorithm.
引用
收藏
页码:173 / 178
页数:6
相关论文
共 32 条
[11]   Image encryption scheme by using iterative random phase encoding in gyrator transform domains [J].
Liu, Zhengjun ;
Xu, Lie ;
Lin, Chuang ;
Dai, Jingmin ;
Liu, Shutian .
OPTICS AND LASERS IN ENGINEERING, 2011, 49 (04) :542-546
[12]   Encrypted optical memory system using three-dimensional keys in the Fresnel domain [J].
Matoba, O ;
Javidi, B .
OPTICS LETTERS, 1999, 24 (11) :762-764
[13]   Known-plaintext attack on optical encryption based on double random phase keys [J].
Peng, X ;
Zhang, P ;
Wei, HZ ;
Yu, B .
OPTICS LETTERS, 2006, 31 (08) :1044-1046
[14]   Asymmetric cryptosystem based on phase-truncated Fourier transforms [J].
Qin, Wan ;
Peng, Xiang .
OPTICS LETTERS, 2010, 35 (02) :118-120
[15]  
Rajput S.K., 2012, APPL OPTICS, V51
[16]  
Rajput S. K., 2012, OSA, V51
[17]  
Rajput S.K., 2016, OPTICAL COMMUNICATIO
[18]   OPTICAL-IMAGE ENCRYPTION BASED ON INPUT PLANE AND FOURIER PLANE RANDOM ENCODING [J].
REFREGIER, P ;
JAVIDI, B .
OPTICS LETTERS, 1995, 20 (07) :767-769
[19]   Gyrator transform: properties and applications [J].
Rodrigo, Jose A. ;
Alieva, Tatiana ;
Calvo, Maria L. .
OPTICS EXPRESS, 2007, 15 (05) :2190-2203
[20]  
Singh H., 2015, OPT LASER ENG, V67, P9