Neutral stochastic functional differential equations driven by a fractional Brownian motion in a Hilbert space

被引:191
作者
Boufoussi, Brahim [1 ]
Hajji, Salah [1 ]
机构
[1] Cadi Ayyad Univ, Dept Math, Fac Sci Semlalia, Marrakech 2390, Morocco
关键词
Mild solution; Semigroup of bounded linear operator; Fractional powers of closed operators; Fractional Brownian motion; Wiener integral; EVOLUTION-EQUATIONS; EXISTENCE; BEHAVIOR;
D O I
10.1016/j.spl.2012.04.013
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this note we prove an existence and uniqueness result of mild solutions for a neutral stochastic differential equation with finite delay, driven by a fractional Brownian motion in a Hilbert space and we establish some conditions ensuring the exponential decay to zero in mean square for the mild solution. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1549 / 1558
页数:10
相关论文
共 18 条
[1]  
[Anonymous], APPL MATH SCI
[2]   Functional differential equations driven by a fractional Brownian motion [J].
Boufoussi, B. ;
Hajji, S. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (02) :746-754
[3]  
Boufoussi B., 2011, AFR MATH
[4]   The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion [J].
Caraballo, T. ;
Garrido-Atienza, M. J. ;
Taniguchi, T. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (11) :3671-3684
[5]   Integral Inequality and Exponential Stability for Neutral Stochastic Partial Differential Equations with Delays [J].
Chen, Huabin .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2009,
[6]   Stochastic differential equations for fractional Brownian motions [J].
Coutin, L ;
Qian, ZM .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (01) :75-80
[7]  
Ferrante M, 2006, BERNOULLI, V12, P85
[8]   Convergence of delay differential equations driven by fractional Brownian motion [J].
Ferrante, Marco ;
Rovira, Carles .
JOURNAL OF EVOLUTION EQUATIONS, 2010, 10 (04) :761-783
[9]  
Goldstein J.A., 1985, OXFORD MATH MONOGRAP
[10]  
Govindan TE, 2011, J NUMER MATH STOCH, V3