Convex cocompact subgroups of mapping class groups

被引:87
作者
Farb, Benson [1 ]
Mosher, Lee
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
关键词
Mapping class group; Schottky subgroup; cocompact subgroup; convexity; pseudo-Anosov;
D O I
10.2140/gt.2002.6.91
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a theory of convex cocompact subgroups of the mapping class group MCG of a closed, oriented surface S of genus at least 2, in terms of the action on Teichmuller space. Given a subgroup G of MCG defining an extension 1 -> pi(1)(S) -> Gamma(G) -> G -> 1, we prove that if Gamma(G) is a word hyperbolic group then G is a convex cocompact subgroup of MCG. When G is free and convex cocompact, called a Schottky subgroup of MCG, the converse is true as well; a semidirect product of pi(1)(S) by a free group G is therefore word hyperbolic if and only if G is a Schottky subgroup of MCG. The special case when G = Z follows from Thurston's hyperbolization theorem. Schottky subgroups exist in abundance: sufficiently high powers of any independent set of pseudo-Anosov mapping classes freely generate a Schottky subgroup.
引用
收藏
页码:91 / 152
页数:62
相关论文
共 47 条
[1]  
[Anonymous], 1980, LECT NOTES MATH
[2]   On quasiconvex subgroups of word hyperbolic groups [J].
Arzhantseva, GN .
GEOMETRIAE DEDICATA, 2001, 87 (1-3) :191-208
[3]  
Baer R, 1928, J REINE ANGEW MATH, V159, P101
[4]   EXTREMAL PROBLEM FOR QUASICONFORMAL MAPPINGS AND A THEOREM BY THURSTON [J].
BERS, L .
ACTA MATHEMATICA, 1978, 141 (1-2) :73-98
[5]   FIBER SPACES OVER TEICHMULLER SPACES [J].
BERS, L .
ACTA MATHEMATICA, 1973, 130 (1-2) :89-126
[6]  
BESTVINA M, 1992, J DIFFER GEOM, V35, P85
[7]  
Birman J. S., 1976, ANN MATH STUD, V82
[8]   ABELIAN AND SOLVABLE SUBGROUPS OF THE MAPPING CLASS GROUP [J].
BIRMAN, JS ;
LUBOTZKY, A ;
MCCARTHY, J .
DUKE MATHEMATICAL JOURNAL, 1983, 50 (04) :1107-1120
[9]   Branched coverings of cubical complexes and subgroups of hyperbolic groups [J].
Brady, N .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1999, 60 :461-480
[10]  
Brock J, 2001, ARXIVMATHGT0109045