Beltrami Equation with Coefficient in Sobolev and Besov Spaces

被引:30
作者
Cruz, Victor [1 ]
Mateu, Joan [2 ]
Orobitg, Joan [2 ]
机构
[1] Univ Tecnol Mixteca, Inst Fis & Matemat, Huajuapan De Leon 69000, Oaxaca, Mexico
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2013年 / 65卷 / 06期
关键词
Beltrami equation; Calderón- Zygmund operators; Quasiregular mappings; Sobolev spaces;
D O I
10.4153/CJM-2013-001-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our goal in this work is to present some function spaces on the complex plane C, X(C), for which the quasiregular solutions of the Beltrami equation, partial derivative f(z) = mu(z)partial derivative f(z), have first derivatives locally in X(C), provided that the Beltrami coefficient it belongs to X(C).
引用
收藏
页码:1217 / 1235
页数:19
相关论文
共 26 条
[1]  
[Anonymous], 2002, GRADUATE STUDIES MAT
[2]  
[Anonymous], 2009, PRINCETON MATH SERIE
[3]  
[Anonymous], 1970, SINGULAR INTEGRALS D
[4]  
[Anonymous], 1988, Rev. Mat. Iberoamericana
[5]  
[Anonymous], DE GRUYTER SERIES NO
[7]  
Baratchart L., ARXIV11116776V3
[8]   How to recognize constant functions.: Connections with Sobolev spaces [J].
Brézis, H .
RUSSIAN MATHEMATICAL SURVEYS, 2002, 57 (04) :693-708
[9]  
Brezis H., 2011, FUNCTIONAL ANAL SOBO
[10]   Boundedness of rough oscillatory singular integral on Triebel-Lizorkin spaces [J].
Chen, JC ;
Jia, HY ;
Jiang, LY .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 306 (02) :385-397