On the fabrication of bioactive glass implants for bone regeneration by laser assisted rapid prototyping based on laser cladding

被引:22
作者
del Val, J. [1 ]
Lopez-Cancelos, R. [2 ]
Riveiro, A. [1 ]
Badaoui, A. [2 ]
Lusquinos, F. [1 ]
Quintero, F. [1 ]
Comesana, R. [2 ]
Boutinguiza, M. [1 ]
Pou, J. [1 ]
机构
[1] Univ Vigo, Dept Appl Phys, EE Ind, E-36310 Vigo, Spain
[2] Univ Vigo, EEI, Dept Mat Engn Appl Mech & Construct, E-36310 Vigo, Spain
关键词
Laser cladding; Rapid prototyping; Silicate based bioactive glass; Biomedical applications; CALCIUM-PHOSPHATE COATINGS; MECHANICAL-PROPERTIES; IN-VITRO; CRYSTALLIZATION; SCAFFOLDS; RECONSTRUCTION; 45S5; CERAMICS; SILICATE;
D O I
10.1016/j.ceramint.2015.10.009
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The processing of bioceramic materials is a topic of great interest for bone regeneration; bioceramic implants are specifically appropriate for low-load applications, such as cranioplasty. In the present study, we investigated the capabilities of rapid prototyping based on laser cladding to generate three-dimensional bioactive glass implants without moulds or preplaced powder bed. 45S5 bioactive glass and lower crystallization tendency S520 bioactive glass particles were successfully injected and melted to obtain glass-derived implants with similar mechanical properties to the precursor materials. The role of processing parameters in the process outcome was analysed: optimization of the assist gas volumetric flow, the precursor glass mass flow, the substrate preheating, and the optical power of the CO2 infrared laser beam, allowed to adjust the material cooling rates to preclude extensive crystallization or cracking. The assessment of calcium hydroxyapatite precipitation ability and ion release in simulated body fluid conclude the potential osteoconductivity of the produced implants. (C) 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
引用
收藏
页码:2021 / 2035
页数:15
相关论文
共 56 条
[1]   A comparison of the shapes of hydroxyapatite implants before and after implantation [J].
Abe, K ;
Ono, I .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 2002, 63 (03) :312-318
[2]   ON THE BIOACTIVITY OF SILICATE GLASS [J].
ANDERSSON, OH ;
KARLSSON, KH .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1991, 129 (1-3) :145-151
[3]   A CRITICAL-EVALUATION OF INDENTATION TECHNIQUES FOR MEASURING FRACTURE-TOUGHNESS .1. DIRECT CRACK MEASUREMENTS [J].
ANSTIS, GR ;
CHANTIKUL, P ;
LAWN, BR ;
MARSHALL, DB .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1981, 64 (09) :533-538
[4]   Micro-Raman and FTIR studies of synthetic and natural apatites [J].
Antonakos, Anastasios ;
Liarokapis, Efthymios ;
Leventouri, Theodora .
BIOMATERIALS, 2007, 28 (19) :3043-3054
[5]   Influence of heat treatment on crystallization of bioactive glasses [J].
Arstila, H. ;
Hupa, L. ;
Karlsson, K. H. ;
Hupa, M. .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2008, 354 (2-9) :722-728
[6]   Ceramics for oculo-orbital surgery [J].
Baino, Francesco ;
Vitale-Brovarone, Chiara .
CERAMICS INTERNATIONAL, 2015, 41 (04) :5213-5231
[7]   3D printing of bone substitute implants using calcium phosphate and bioactive glasses [J].
Bergmann, Christian ;
Lindner, Markus ;
Zhang, Wen ;
Koczur, Karolina ;
Kirsten, Armin ;
Telle, Rainer ;
Fischer, Horst .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2010, 30 (12) :2563-2567
[8]  
Brink M, 1997, J BIOMED MATER RES, V36, P109, DOI 10.1002/(SICI)1097-4636(199707)36:1<109::AID-JBM13>3.0.CO
[9]  
2-D
[10]   45S5 Bioglass®-derived glass-ceramic scaffolds for bone tissue engineering [J].
Chen, QZZ ;
Thompson, ID ;
Boccaccini, AR .
BIOMATERIALS, 2006, 27 (11) :2414-2425